
MEGARA Pipeline Documentation
Release 0.8.dev0

Sergio Pascual

Dec 05, 2018

Contents

1 Overview 1

2 Installation 3
2.1 Requirements . 3
2.2 Installing MEGARA DRP . 3
2.3 Installing MEGARA DFP . 6

3 Testing 9
3.1 Running tests . 9

4 Running the pipeline 11
4.1 Format of the observation result . 11
4.2 Format of the requirements file . 12
4.3 Running the pipeline . 13

5 Observing modes 17
5.1 Calibration Modes . 17
5.2 Auxiliary Modes . 44
5.3 Scientific Modes . 53
5.4 Combined Modes . 58

6 Data Products 61
6.1 FITS Keywords . 61
6.2 Data products . 62

7 Reduction Recipes 69
7.1 Execution environment of the Recipes . 69
7.2 Recipe Parameters . 69
7.3 Recipe Products . 70

8 Reference 71
8.1 megaradrp.core — Base classes for processing . 71
8.2 megaradrp.instrument — Static configuration . 73
8.3 megaradrp.processing — Processing functions . 73
8.4 megaradrp.processing.wavecalibration — . 73
8.5 megaradrp.products — Data products of the MEGARA pipeline 73
8.6 megaradrp.recipes — Reduction Recipes for MEGARA 74
8.7 megaradrp.types — MEGARA data types . 74
8.8 megaradrp.datamodel — MEGARA datamodel . 74
8.9 megaradrp.utils — MEGARA utilities . 76
8.10 megaradrp.validators — MEGARA validators . 76
8.11 megaradrp.visualization — MEGARA visualization 76

i

8.12 megaradrp.simulation — Simulation modules . 76
8.13 Indices and tables . 78

9 Glossary 79

10 Cookbook 81

Python Module Index 83

ii

CHAPTER 1

Overview

This guide is intended as an introductory overview of MEGARA Reduction Pipeline packages and
explains how to install and make use of its most important features.

The MEGARA Pipeline can be used as an stand-alone application (referred as MEGARA Data Reduc-
tion Pipeline or MEGARA DRP) or integrated in the GTC Control System (MEGARA Data Factory
Pipeline or MEGARA DFP).

For detailed reference documentation of the functions and classes contained in the package, see the
Reference.

Warning: This “User Guide” is still a work in progress; some of the material is not organized, and
several aspects of the MEGARA Pipeline are not yet covered in sufficient detail.

1

MEGARA Pipeline Documentation, Release 0.8.dev0

2 Chapter 1. Overview

CHAPTER 2

Installation

2.1 Requirements

The MEGARA Pipeline package requires the following packages installed in order to be able to be
installed and work properly:

• python1 either 2.7 or >= 3.4

• setuptools2

• numpy3 >= 1.7

• scipy4

• astropy5 >= 2.0

• numina6 >= 0.17

• scikit-image7

Additional packages are optionally required:

• py.test8 >= 2.5 to run the tests

• sphinx9 to build the documentation

2.2 Installing MEGARA DRP

2.2.1 Using Conda

megaradrp can be installed with conda using a custom channel.

1 https://www.python.org
2 http://peak.telecommunity.com/DevCenter/setuptools
3 http://www.numpy.org/
4 http://www.scipy.org/
5 http://www.astropy.org/
6 https://pypi.python.org/pypi/numina/
7 http://scikit-image.org/
8 http://pytest.org
9 http://sphinx.pocoo.org

3

https://www.python.org
http://peak.telecommunity.com/DevCenter/setuptools
http://www.numpy.org/
http://www.scipy.org/
http://www.astropy.org/
https://pypi.python.org/pypi/numina/
http://scikit-image.org/
http://pytest.org
http://sphinx.pocoo.org

MEGARA Pipeline Documentation, Release 0.8.dev0

From the shell, execute::

conda install -c conda-forge megaradrp

2.2.2 Using pip

To install with pip, simply run::

pip install --no-deps megaradrp

Note: The --no-deps flag is optional, but highly recommended if you already have Numpy installed,
since otherwise pip will sometimes try to upgrade your Numpy installation, which may not always be
desired.

2.2.3 Building from source

The latest stable version of MEGARA DRP can be downloaded from https://pypi.python.org/pypi/
megaradrp

To install MEGARA DRP, use the standard installation procedure:

$ tar zxvf megaradrp-X.Y.Z.tar.gz
$ cd megaradrp-X.Y.Z
$ python setup.py install

The install command provides options to change the target directory. By default installation requires
administrative privileges. The different installation options can be checked with:

$ python setup.py install --help

2.2.4 Checking the installation

Once the installation is finished, you can check by listing the installed recipes with the command line
interface tool numina:

(myenv) $./bin/numina show-instruments
INFO: Numina simple recipe runner version 0.13.0
Instrument: MEGARA
has configuration 'default'
has pipeline 'default', version 1
has pipeline 'experimental', version 1

Development version

The development version can be checked out with:

$ git clone https://github.com/guaix-ucm/megaradrp.git

And then installed following the standard procedure:

$ cd megaradrp
$ python setup.py install

4 Chapter 2. Installation

https://pypi.python.org/pypi/megaradrp
https://pypi.python.org/pypi/megaradrp

MEGARA Pipeline Documentation, Release 0.8.dev0

Building the documentation

The MEGARA DRP documentation is base on sphinx10. With the package installed, the html documen-
tation can be built from the doc directory:

$ cd doc
$ make html

The documentation will be copied to a directory under build/sphinx.

The documentation can be built in different formats. The complete list will appear if you type make

2.2.5 Deployment with Virtualenv

Virtualenv11 is a tool to build isolated Python environments.

It’s a great way to quickly test new libraries without cluttering your global site-packages or run multiple
projects on the same machine which depend on a particular library but not the same version of the
library.

Install virtualenv

I install it with the package system of my OS, so that it ends in my global site-packages.

With Fedora/EL is just:

$ sudo yum install python-virtualenv

Create virtual environment

Create the virtual environment enabling the packages already installed in the global site-packages via
the OS package system. Some requirements (in particullar numpy and scipy) are difficult to build: they
require compiling and external C and FORTRAN libraries to be installed.

So the command is:

$ virtualenv --system-site-packages myenv

If you need to create the virtualenv without global packages, drop the system-site-packages flag.

Activate the environment

Once the environment is created, you need to activate it. Just change directory into it and load with
your command line interpreter the script bin/activate.

With bash:

$ cd myenv
$. bin/activate
(myenv) $

With csh/tcsh:

$ cd myenv
$ source bin/activate
(myenv) $

10 http://sphinx.pocoo.org
11 http://pypi.python.org/pypi/virtualenv

2.2. Installing MEGARA DRP 5

http://sphinx.pocoo.org
http://pypi.python.org/pypi/virtualenv

MEGARA Pipeline Documentation, Release 0.8.dev0

Notice that the prompt changes once you are activate the environment. To deactivate it just type deac-
tivate:

(myenv) $ deactivate
$

2.3 Installing MEGARA DFP

This section described how to install the MEGARA Pipeline inside the GTC Control system.

In the following we assume that we are installing with user gcsop.

Login in the gcsop account and activate the GTC environment:

$ /opt/gcs/tools/nrp -p linux -s bash

Change working directory to /work/gcsop/src_python/gtc:

$ cd /work/gcsop/src_python/gtc
$ ls
AL DSL SSL

We have to install numina under DSL and megaradrp under AL.

Please refer to Numina manual12 to install Numina and its dependences under Solaris 10.

2.3.1 Install numina

First, install all the dependencies:

• setuptools

• six

• numpy >= 1.7

• scipy

• astropy >= 1.0

• PyYaml

• singledispatch

If you are installing a development version, Cython is also required.

Most are available as precompiled packages in Linux. Please refer to Numina manual13 to install Nu-
mina and its dependences under Solaris 10.

Then, download the source code, either from PyPI or github:

$ pwd
/work/gcsop/src_python/gtc/DSL/
$ git clone https://github.com/guaix-ucm/numina.git
$ cd numina

Create a file numina.mod with the following content:

12 https://numina.readthedocs.io/en/latest/user/solaris.html#solaris10
13 https://numina.readthedocs.io/en/latest/user/solaris.html#solaris10

6 Chapter 2. Installation

https://numina.readthedocs.io/en/latest/user/solaris.html#solaris10
https://numina.readthedocs.io/en/latest/user/solaris.html#solaris10

MEGARA Pipeline Documentation, Release 0.8.dev0

NAME=numina
TYPE=device

l:numina:python:y

And then build and install using nmk:

$ nmk -t module.rebuild
$ nmk -t module.install

2.3.2 Install megaradrp

Change directory to /work/gcsop/src_python/gtc/AL/ and download the source code of megaradrp, either
from PyPI14 or from github15:

$ pwd
/work/gcsop/src_python/gtc/AL/
$ git clone https://github.com/guaix-ucm/megaradrp.git
$ cd megaradrp

Create a file megaradrp.mod with the following content:

NAME=megaradrp
TYPE=device

l:megaradrp:python:y

And then build and install using nmk:

$ nmk -t module.rebuild
$ nmk -t module.install

You can check that everything works by running the numina command line tool:

$ numina show-instruments
Instrument: MEGARA
has configuration 'default'
has pipeline 'default', version 1

14 https://pypi.python.org/pypi/megaradrp
15 https://github.com/guaix-ucm/megaradrp

2.3. Installing MEGARA DFP 7

https://pypi.python.org/pypi/megaradrp
https://github.com/guaix-ucm/megaradrp

MEGARA Pipeline Documentation, Release 0.8.dev0

8 Chapter 2. Installation

CHAPTER 3

Testing

This section describes the testing framework and options for testing MEGARA DRP

3.1 Running tests

MEGARA DRP uses py.test16 as its testing framework.

As MEGARA DRP does not contain C/Cython extensions, the tests can be run directly in the source
code, as:

cd megaradrp-0.4.0
cd src
py.test megaradrp

Some of the tests rely on data downloaded from a server. These tests are skipped by default. To enable
them run instead:

py.test --run-remote megaradrp

The reduction recipes are tested with remote data. Each recipe is run in a directory created under the
default $TMPDIR, which is based on the user temporal directory. The base of the created directories can
be changed with the option --basetemp=dir:

py.test --basetemp=/home/spr/test100 --run-remote megaradrp

16 http://pytest.org

9

http://pytest.org

MEGARA Pipeline Documentation, Release 0.8.dev0

10 Chapter 3. Testing

CHAPTER 4

Running the pipeline

The MEGARA DRP is run through a command line interface provided by numina.

The run mode of numina requires:

• A observation result file in YAML17 format

• A requirements file in YAML format

• The raw images obtained in the observing block

• The calibrations required by the recipe

The observation result file and the requirements file are created by the user, the format is described in
the following sections.

4.1 Format of the observation result

The contents of the file is a serialized dictionary with the following keys:

id: not required, string, defaults to 1 Unique identifier of the observing block

instrument: required, string Name of the instrument, as it is returned by numina
show-instruments

mode: required, string Name of the observing mode, as returned by numina show-modes

frames: required, list of strings List of images names

children: not required, list of integers, defaults to empty list Identifications of nested observing
blocks

This is an example of the observation result file

id: dark-test-21
instrument: MEGARA
mode: MegaraDarkImage
images:

- r0121.fits
- r0122.fits

(continues on next page)

17 http://www.yaml.org

11

http://www.yaml.org

MEGARA Pipeline Documentation, Release 0.8.dev0

(continued from previous page)

- r0123.fits
- r0124.fits
- r0125.fits
- r0126.fits
- r0127.fits
- r0128.fits
- r0129.fits
- r0130.fits
- r0131.fits
- r0132.fits

4.2 Format of the requirements file

This file contains calibrations obtained by running recipes (called products) and other parameters (nu-
meric or otherwise) required by the recipes (named requirements). The file is serialized using YAML18

Example requirements file:

version: 1 (1)
products: (2)

EMIR:
- {id: 1, content: 'file1.fits', type: 'MasterFlat', tags: {'filter': 'J'}, ob:

→˓200} (3)
- {id: 4, content: 'file4.fits', type: 'MasterBias', tags: {'readmode': 'cds'},

→˓ob: 400} (3)
MEGARA:
- {id: 1, content: 'file1.fits', type: 'MasterFiberFlat', tags: {'vph': 'LR-U'},

→˓ ob: 1200} (3)
- {id: 2, content: 'file2.yml', type: 'TraceMap', tags: {'vph': 'LR2', 'readmode

→˓': 'fast'}, ob: 1203} (3)
requirements: (4)

MEGARA:
default:

MegaraArcImage: (5)
polynomial_degree: 5 (6)
nlines: [5, 5] (6)

1. Mandatory entry, version must be 1

2. Products of other recipes are list, by instrument

3. The products of the reduction recipes are listed. Each result must contain:

• A type, one of the types of the products of the DRP in string format

• A tags field, used to select the correct calibration based on the keywords of the input.

• A content field, a pointer to the serialized version of the calibration.

• A id field, unique integer

• A ob field, optional integer, used to store the observation id of the images that created
the calibration.

4. Numerical parameters of the recipes are stored in requirements, with different sections per
instrument.

5. The name of the observing mode.

6. Different parameters for the recipe corresponding to the observing mode in (5)

18 http://www.yaml.org

12 Chapter 4. Running the pipeline

http://www.yaml.org

MEGARA Pipeline Documentation, Release 0.8.dev0

4.3 Running the pipeline

numina copies the images (calibrations and raw data) from directory datadir to directory workdir,
where the processing happens. The result is stored in directory resultsdir. The default values are for
each directory are data, obsid<id_of_obs>_work and obsid<id_of_obs>_results. All these
directories can be defined in the command line using flags:

$ numina run --workdir /tmp/test1 --datadir /scrat/obs/run12222 obs.yaml -r
→˓requires.yaml

See Command Line Interface19 for a full description of the command line interface.

Following the example, we create a directory data in our current directory and copy there the raw
frames from r0121.fits to r0132.fits and the master bias master_bias-1.fits.

The we run:

$ numina run obsresult.yaml -r requirements.yaml
INFO: Numina simple recipe runner version 0.15
INFO: Loading observation result from 'obsrun.yaml'
INFO: Identifier of the observation result: 1
INFO: instrument name: MEGARA
...
numina.recipes.megara INFO stacking 4 images using median
numina.recipes.megara INFO bias reduction ended
INFO: result: BiasRecipeResult(qc=Product(type=QualityControlProduct(), dest='qc'),
→˓ biasframe=Product(type=MasterBias(), dest='biasframe'))
INFO: storing result

We get information of what’s going on through logging messages. In the end, the result and log files
are stored in obsid<id_of_obs>_results. The working directory obsid<id_of_obs>_work can
be inspected too. Intermediate results will be saved here.

On the other hand, in the following we attach a short code to run megaradrp by using a Python script.
This is useful to use the Python debugger.

from numina.user.cli import main
from megaradrp.loader import load_drp

def run_recipe():
main(['run', 'obsresult.yaml', '-r', 'requirements.yaml'])

if __name__ == "__main__":
run_recipe()

4.3.1 Pipeline’s Flow Example

In this subsection, we detail an example about how to generate a called Master Fiber Flat Image. To
achieve our goal, a schematic flow can be seen in the next Figure:

MegaraBiasImage

MegaraSlitFlat

MegaraTraceMap

MegaraFiberFlat

MegaraArcCalibration

MegaraModelMap

19 https://numina.readthedocs.io/en/latest/user/cli.html#cli

4.3. Running the pipeline 13

https://numina.readthedocs.io/en/latest/user/cli.html#cli

MEGARA Pipeline Documentation, Release 0.8.dev0

It is important to emphasize the fact that each time a Recipe is run, the results must be renamed and
copied to the data directory in order to be the input of the next Recipe if it is needed. Taking this in
mind, the content of the requirements.yaml file might well be and is common to all Recipes:

version: 1
products:

MEGARA:
- {id: 1, type: 'LinesCatalog', tags: {}, content: 'ThAr_arc_LR-U.txt'}
- {id: 2, type: 'MasterBias', tags: {}, content: 'master_bias.fits'}
- {id: 3, type: 'TraceMap', tags: {}, content: 'master_traces.json'}
- {id: 4, type: 'MasterFiberFlat', tags: {}, content: 'master_fiberflat.fits'}
- {id: 5, type: 'WavelengthCalibration', tags: {}, content: 'master_wlcalib.json

→˓'}
- {id: 6, type: 'MasterFiberFlatFrame', tags: {}, content: 'fiberflat_frame.fits

→˓'}
- {id: 7, type: 'ModelMap', tags: {}, content: 'master_model.json'}
- {id: 8, type: 'MasterSlitFlat', tags: {}, content: 'master_slitflat.fits'}

requirements: {}

In order to run the next example, the user should execute the next command at least 6 times taking into
account that the file obsresult-%step.yaml should change with each execution:

$ numina run obsresult-1.yaml -r requirements.yaml
$ numina run obsresult-2.yaml -r requirements.yaml
...
$ numina run obsresult-6.yaml -r requirements.yaml

MegaraBiasImage file, obsresult-1.yaml:

id: 1
instrument: MEGARA
mode: MegaraBiasImage
images:

- bias1.fits
- bias2.fits
- bias3.fits
- bias4.fits
- bias5.fits

MegaraTraceMap, obsresult-2.yaml:

id: 2
instrument: MEGARA
mode: MegaraTraceMap
images:

- flat1.fits
- flat2.fits
- flat3.fits
- flat4.fits
- flat5.fits

MegaraArcCalibration, obsresult-3.yaml:

id: 3
instrument: MEGARA
mode: MegaraArcCalibration
images:

- arc1.fits
- arc2.fits
- arc3.fits
- arc4.fits
- arc5.fits

14 Chapter 4. Running the pipeline

MEGARA Pipeline Documentation, Release 0.8.dev0

MegaraSlitFlat, obsresult-4.yaml:

id: 4
instrument: MEGARA
mode: MegaraSlitFlat
images:

- flat1.fits
- flat2.fits
- flat3.fits
- flat4.fits
- flat5.fits

MegaraModel, obsresult-5.yaml:

id: 5
instrument: MEGARA
mode: MegaraModelMap
images:

- flat1.fits
- flat2.fits
- flat3.fits
- flat4.fits
- flat5.fits

MegaraFiberFlat, obsresult-6.yaml:

id: 6
instrument: MEGARA
mode: MegaraFiberFlat
images:

- flat1.fits
- flat2.fits
- flat3.fits
- flat4.fits
- flat5.fits

Notice that if you would want to execute this example automatically, you could code a script (following
the same skeleton as shown above) with a loop flow to read the .yaml files and the outputs that each
recipe generates.

4.3. Running the pipeline 15

MEGARA Pipeline Documentation, Release 0.8.dev0

16 Chapter 4. Running the pipeline

CHAPTER 5

Observing modes

Observing modes are prescribed method of observing with MEGARA. Each observing mode is pro-
cessed with one reduction recipe. In the following we describe the observing modes and its corre-
sponding recipe. The Usage field describes if the mode is to be used in the telescope (Online, DFP
Mode) or after the observation by the user (Offline, DRP Mode).

Observing modes are described in full detail elsewhere (document TEC/MEG/05)

5.1 Calibration Modes

The calibration modes are those operating modes that are intended (1) to either analyze the state of the
instrument or (2) to be used for processing scientific observations from raw to science-grade data.

With respect to the determination of the status of the instrument the following calibration images should
be acquired:

• Bias

• Dark

• Fiber-flat

• Arc

Regarding the processing of scientific data this basically implies obtaining calibration images in number
and quality required to remove the instrumental signatures so to obtain a science-grade image. These
images, which are taken as part of routine scientific operations, include:

• Bias

• Dark

• Slit-flat

• Fiber-flat

• Twilight fiber-flat

• Arc

• Standard star

17

MEGARA Pipeline Documentation, Release 0.8.dev0

Except for the slit-flat, that might be taken only occasionally, the rest of this latter set of observing
modes will be taken routinely as part of either daytime or nighttime operations. We will refer to these
as “Daily CalibrationModes”. Besides these modes we have identified a series of calibration modes
(named “System Calibration Modes”) that are also necessary for processing MEGARA observations
but that are only produced occasionally as part of long-term calibrations of the instrument to be carried
out by the observatory staff.

Thus, the “System Calibration Modes” will be:

• Bad-pixels mask

• Linearity Test

• Slit-flat. Whether the slit-flat should be considered as a “Daily Calibration” or “System Calibra-
tion” mode is TBD and will depend on the stability of the pixel-to-pixel efficiency of the MEGARA
CCD.

In this latter case, the difference between a “System Calibration Mode” and the corresponding “Aux-
iliary Mode” described in Section 3 depends on the frequency the observing mode has to be executed.
Auxiliary modes are typically run once every observing run (e.g. the fine-acquisition ones) or, in the
best case, after a long period of inactivity. System Calibration modes, on the other hand, are expected
to be run only after major changes in the telescope or the instrument or if a degradation of any of the
subsystems of the instrument is suspected.

The need for obtaining all these sets of images drives the requirements and characteristics of the Cali-
bration modes described below as defined by the MEGARA team.

5.1.1 Bias Image

Mode Bias

Usage Offline, Online

Key MegaraBIAS_IMAGE

Product MasterBias

Recipe BiasRecipe

Recipe input RecipeInput

Recipe result RecipeResult

Before the Analog-to-Digital conversion is performed a pedestal (electronic) level is added to all images
obtained with the MEGARA CCD. This is a standard procedure in CCD imaging and spectroscopy
applications for Astronomy and is intended to minimize the ADC errors produced when very low
analog values are converted to DUs.

Requirements of the mode

The sequence for this observing mode should include the actions to calibrate the pedestal level of the
detectors and associated control electronics by taking images with null integration time. This mode
requires having the shutter closed and to readout the detector in a series of exposures with null integra-
tion time, being this series the bias image set.

Procedure

The frames in the observed block are stacked together using the median of them as the final result. The
variance of the result frame is computed using two different methods. The first method computes the
variance across the pixels in the different frames stacked. The second method computes the variance in
each channel in the result frame.

18 Chapter 5. Observing modes

MEGARA Pipeline Documentation, Release 0.8.dev0

Products

Bias image sets are to be obtained both as part of the activities related to the verification of the instru-
ment status and for processing data for scientific exploitation.

Recipe, inputs and results

class megaradrp.recipes.calibration.bias.BiasRecipe(*args, **kwargs)
Process BIAS images and create a MASTER_BIAS product.

This recipe process a set of bias images obtained in Bias Image mode and returns a combined
product image, trimmed to the physical size of the detector.

See also:

megaradrp.types.MasterBias description of the MasterBias product

Notes

Images are corrected from overscan and trimmed to the physical size of the detector. Then, they
corrected from Bad Pixel Mask, if the BPM is available, Finally, images are stacked using the
median.

class BiasRecipeInput(*args, **kwds)
BiasRecipeInput documentation.

Attributes

master_bpm [MasterBPM, requirement, optional] Master Bad Pixel Mask

obresult [ObservationResultType, requirement] Observation Result

class BiasRecipeResult(*args, **kwds)
BiasRecipeResult documentation.

Attributes

master_bias [MasterBias, product]

qc [QualityControlProduct, product]

RecipeInput
alias of numina.core.metaclass.BiasRecipeInput

RecipeResult
alias of numina.core.metaclass.BiasRecipeResult

run(rinput)
Execute the recipe.

Parameters

rinput [BiasRecipe.RecipeInput]

Returns

BiasRecipe.RecipeResult

set_base_headers(hdr)
Set metadata in FITS headers.

5.1. Calibration Modes 19

MEGARA Pipeline Documentation, Release 0.8.dev0

5.1.2 Dark Image

Mode Dark

Usage Offline, Online

Key MegaraDarkImage

Product MasterDark

Recipe DarkRecipe

Recipe input DarkRecipeInput

Recipe result DarkRecipeResult

The potential wells in CCD detectors spontaneously generate electron-ion pairs at a rate that is a func-
tion of temperature. For very long exposures this translates into a current that is associated with no
light source and that is commonly referred to as dark current.

Requirements

While in imaging or low-resolution spectroscopy this is nowadays a negligible effect thanks to the
extremely low dark current levels of state-of-the-art CCDs (typically < 1 e-/hour) when working at
intermediate-to-high spectral resolutions where the emission per pixel coming from the sky background
and the astronomical source can be very low this is worth considering.

The sequence for this observing mode should include the actions to measure the variation of the intrin-
sic signal of the system by taking images under zero illumination condition and long integration time.
This mode requires that the focal-plane cover is configured (it should be fully closed), the shutter is
closed and to expose a certain time and readout the detector a series of exposures, being this series the
dark image set.

Procedure

The “User” processes an observing block obtained in the observing mode Dark. This mode includes the
required actions to obtain a master dark frame. The master dark generated is used in other stages of the
data processing.

Products

Dark image sets are to be obtained both as part of the activities related to the verification of the instru-
ment status and for processing data for scientific exploitation.

A bidimensional dark image, QA flag, a text log file of the processing and a structured text file contain-
ing information about the processing.

Recipe, inputs and results

class megaradrp.recipes.calibration.dark.DarkRecipe(*args, **kwargs)
Process DARK images and provide MASTER_DARK.

class DarkRecipeInput(*args, **kwds)
DarkRecipeInput documentation.

Attributes

master_bias [MasterBias, requirement] Master BIAS image

obresult [ObservationResultType, requirement] Observation Result

20 Chapter 5. Observing modes

MEGARA Pipeline Documentation, Release 0.8.dev0

class DarkRecipeResult(*args, **kwds)
DarkRecipeResult documentation.

Attributes

master_dark [MasterDark, product]

qc [QualityControlProduct, product]

RecipeInput
alias of numina.core.metaclass.DarkRecipeInput

RecipeResult
alias of numina.core.metaclass.DarkRecipeResult

set_base_headers(hdr)
Set metadata in FITS headers.

5.1.3 Slit-flat

Mode Slit-flat

Usage Offline, Online

Key MegaraSlitFlat

Product MasterSlitFlat

Recipe SlitFlatRecipe

Recipe input SlitFlatRecipeInput

Recipe result SlitFlatRecipeResult

In the case of fiber-fed spectrographs the correction for the detector pixel-to-pixel variation of the sensi-
bility is usually carried out using data from laboratory, where the change in efficiency of the detector at
different wavelengths is computed and then used to correct for this effect for each specific instrument
configuration (VPH setup in the case of MEGARA).

Requeriments

In the case of MEGARA we will offset the pseudo-slit from its optical focus position to ensure that
the gaps between fibers are also illuminated when a continuum (halogen) lamp at the ICM is used.
The NSC zemax model of the spectrograph indicates that by offsetting 3mm the pseudo-slit we would
already obtain a homogenous illumination of the CCD. A series of images with different count levels
would be obtained.

The quality of present-day CCDs leads to a rather small impact of these pixel-to-pixel variations in
sensitivity on either the flux calibration and the cosmetics of the scientific images, especially considering
that not one but a number of pixels along the spatial direction are extracted for each fiber and at each
wavelength. Therefore, we anticipate that this correction might not be needed or that, as a maximum, a
first-order correction based on laboratory data might suffice. However, before the results of the analysis
of the pixel-to-pixel variations in sensitivity planned using our CCD230 e2V test CCD are obtained we
will consider this observing mode as TBC.

This mode requires having the ICM halogen lamp on, the instrument shutter open, to move the pseudo-
slit to the open position, to configure the VPH wheel mechanism in order to select the grating to be used,
to move the focusing mechanism to the position pre-defined for the specific VPH of choice but offset by
3mm and to expose a certain time and to readout the detector a series of exposures, being this series the
slit-flat image set.

5.1. Calibration Modes 21

MEGARA Pipeline Documentation, Release 0.8.dev0

Procedure

The “User” processes an observing block obtained in the observing mode Slit-flat. This mode includes
the required actions to obtain a master slit-flat field. The master slit-flat field generated is used in other
stages of the data processing.

Products

Slit-flat image sets are to be obtained both as part of the activities related to the verification of the instru-
ment status (such as for evaluating the status of the MEGARA spectrograph) and also for processing
data for scientific exploitation (correction for the pixel-to-pixel variation in sensitivity). The frequency
at which these detector flat images should be acquired is TBC. Although defined in this document as a
mode to be considered part of the “Daily Calibration Modes” if it is finally used only sporadic it should
be considered as part of the “System Calibration Modes” instead.

A bidimensional master slit flat field, QA flag, a text log file of the processing and a structured text file
containing information about the processing.

Recipe, inputs and results

class megaradrp.recipes.calibration.slitflat.SlitFlatRecipe(*args, **kwargs)
Process SLIT_FLAT images and create MasterSlitFlat.

RecipeInput
alias of numina.core.metaclass.SlitFlatRecipeInput

RecipeResult
alias of numina.core.metaclass.SlitFlatRecipeResult

class SlitFlatRecipeInput(*args, **kwds)
SlitFlatRecipeInput documentation.

Attributes

master_bias [MasterBias, requirement] Master BIAS image

master_bpm [MasterBPM, requirement, optional] Master Bad Pixel Mask

master_dark [MasterDark, requirement, optional] Master DARK image

obresult [ObservationResultType, requirement] Observation Result

class SlitFlatRecipeResult(*args, **kwds)
SlitFlatRecipeResult documentation.

Attributes

master_slitflat [MasterSlitFlat, product]

qc [QualityControlProduct, product]

reduced_image [ProcessedFrame, product]

set_base_headers(hdr)
Set metadata in FITS headers.

5.1.4 Trace

Mode Trace

Usage Offline, Online

Key MegaraTraceMap

Product TraceMap.

22 Chapter 5. Observing modes

MEGARA Pipeline Documentation, Release 0.8.dev0

Recipe TraceMapRecipe

Recipe input TraceMapRecipeInput

Recipe result TraceMapRecipeResult

Although for the majority of the observing modes described elsewhere in this document the MEGARA
off-line pipeline will perform its own fiber spectra extraction from the 2D CCD FITS frame, there are
cases where an archival master “trace map” should be used instead. Note that a different “trace map”
should be available for each pseudo-slit and VPH combination.

Requirements

This observing mode should include the actions needed to obtain a series of Fiber-flats that should be
combined to generate a master “trace map”. This will be done by means of illuminating the instrument
focal plane with a continuum (halogen) lamp that is part of the GTC Instrument Calibration Module
(ICM). The use of the twilight sky is not recommended in this case as the twilight sky can present strong
absorption lines that could lead to errors in the resulting trace map at specific wavelengths.

This mode requires having the ICM turned on, one of the halogen lamps at the ICM also turned on, to
configure the focal-plane cover (at least one of the sides should be open), to have the instrument shutter
open, to move the pseudo-slit to that of the instrument mode of choice, to configure the VPH wheel
mechanism in order to select the grating to be used, to move the focusing mechanism to the position
pre-defined for the specific VPH of choice and to expose a certain time and to readout the detector a
series of exposures, being this series the trace map image set.

Procedure

The “User” processes an observing block obtained in the observing mode Trace. This mode includes
the required actions to obtain a mapping of the trace of the fibers. The master trace map generated is
used in other stages of the data processing.

Products

Trace map image sets are to be obtained both as part of the activities related to the verification of the
instrument status and for processing data for scientific exploitation. Note, however, that the use of this
observing mode for scientific exploitation should be limited as it could affect to the general performance
of the on-line quick-look software.

This mode produces the tracing information required to extract the flux of the fibers. The result is stored
in an object named master_traces of type TraceMap.

Recipe

class megaradrp.recipes.calibration.trace.TraceMapRecipe(*args, **kwargs)
Provides tracing information from continuum flat images.

This recipe process a set of continuum flat images obtained in Trace Map mode and returns the
tracing information required to perform fiber extraction in other recipes. The recipe also returns
the result of processing the input images upto dark correction.

See also:

megaradrp.products.tracemap.TraceMap description of TraceMap product

megaradrp.recipes.calibration.modelmap.ModelMapRecipe description of Mod-
elMap recipe

numina.array.trace.traces tracing algorithm

5.1. Calibration Modes 23

MEGARA Pipeline Documentation, Release 0.8.dev0

megaradrp.instrument.configs instrument configuration

Notes

Images provided in obresult are trimmed and corrected from overscan, bad pixel mask (if mas-
ter_bpm is not None), bias and dark current (if master_dark is not None). Images thus corrected are
the stacked using the median.

The result of the combination is saved as an intermediate result, named ‘reduced_image.fits’. This
combined image is also returned in the field reduced_image of the recipe result and will be used for
tracing the position of the fibers.

The fibers are grouped in packs of different numbers of fibers. To match the traces in the im-
age with the corresponding fibers is neccessary to know how fibers are packed and where the
different groups of fibers appear in the detector. This information is provided by the fields ‘pseu-
doslit.boxes’ and ‘pseudoslit.boxes_positions’ of the instrument configuration.

Using the column reference provided by ‘pseudoslit.boxes_positions’, peaks are detected (us-
ing an average of 7 columns) and matched to the layout of fibers provided by ‘pseu-
doslit.boxes_positions’. Fibers without a matching peak are counted and their ids stored in the
final master_traces object.

Once the peaks in the reference column are found, each one is traced until the border of the image
is reached. The trace may be lost before reaching the border. In all cases, the beginning and the
end of the trace are stored.

The Y position of the trace is fitted to a polynomial of degree polynomial_degree. The coefficients of
the polynomial are stored in the final master_traces object.

RecipeInput
alias of numina.core.metaclass.TraceMapRecipeInput

RecipeResult
alias of numina.core.metaclass.TraceMapRecipeResult

class TraceMapRecipeInput(*args, **kwds)
TraceMapRecipeInput documentation.

Attributes

debug_plot [int, requirement, optional] Save intermediate tracing plots

master_bias [MasterBias, requirement] Master BIAS image

master_bpm [MasterBPM, requirement, optional] Master Bad Pixel Mask

master_dark [MasterDark, requirement, optional] Master DARK image

obresult [ObservationResultType, requirement] Observation Result

polynomial_degree [int, requirement, optional, default=5] Polynomial degree
of trace fitting

relative_threshold [float, requirement, optional, default=0.3] Threshold for
peak detection

class TraceMapRecipeResult(*args, **kwds)
TraceMapRecipeResult documentation.

Attributes

master_traces [TraceMap, product]

qc [QualityControlProduct, product]

reduced_image [ProcessedImage, product]

reduced_rss [ProcessedRSS, product]

24 Chapter 5. Observing modes

MEGARA Pipeline Documentation, Release 0.8.dev0

refine_boxes_from_image(reduced, expected, cstart=2000, nsearch=20)
Refine boxes using a filtered Fourier image

run(rinput)
Execute the recipe.

Parameters

rinput [TraceMapRecipe.RecipeInput]

Returns

TraceMapRecipe.RecipeResult

Raises

ValidationError if the recipe input is invalid

run_qc(recipe_input, recipe_result)
Run quality control checks

5.1.5 Model Map

Mode ModelMap

Usage Offline

Key MegaraModelMap

Product ModelMap.

Recipe ModelMapRecipe

Recipe input ModelMapRecipeInput

Recipe result ModelMapRecipeResult

Although for the majority of the observing modes described elsewhere in this document the MEGARA
off-line pipeline will perform its own fiber spectra extraction from the 2D CCD FITS frame, there are
cases where an archival master “model map” should be used instead. Note that a different “model
map” should be available for each pseudo-slit and VPH combination.

Requirements

This offline observing mode will use the images obtained in the online observing mode “Trace”.

Procedure

The “User” processes an observing block obtained in the observing mode Trace. This mode includes
the required actions to obtain a mapping of the profiles of the fibers. The master model map generated
is used in other stages of the data processing.

Products

Trace map image sets are to be obtained both as part of the activities related to the verification of the
instrument status and for processing data for scientific exploitation. Note, however, that the use of this
observing mode for scientific exploitation should be limited as it could affect to the general performance
of the on-line quick-look software.

This mode produces the profile information required to perform advanced extraction of the fibers. The
result is stored in an object named master_model of type ModelMap.

5.1. Calibration Modes 25

MEGARA Pipeline Documentation, Release 0.8.dev0

Recipe

class megaradrp.recipes.calibration.modelmap.ModelMapRecipe(*args, **kwargs)
Provides fiber profile information from continuum flat images.

This recipe process a set of continuum flat images obtained in Trace Map mode and returns the fiber
profile information required to perform advanced fiber extraction in other recipes. The recipe also
returns the result of processing the input images upto dark correction.

See also:

megaradrp.products.modelmap.ModelMap description of ModelMap product

megaradrp.recipes.calibration.tracemap.TraceMapRecipe description of
TraceMap recipe

megaradrp.instrument.configs instrument configuration

Notes

Images provided in obresult are trimmed and corrected from overscan, bad pixel mask (if mas-
ter_bpm is not None), bias and dark current (if master_dark is not None). Images thus corrected are
the stacked using the median.

The result of the combination is saved as an intermediate result, named ‘reduced_image.fits’. This
combined image is also returned in the field reduced_image of the recipe result and will be used for
fiting the profiles of the fibers.

The approximate central position of the fibers is obtained from master_traces. Then, for each 100
columns of the reduced image, a vertical cut in the image is fitted to a sum of fiber profiles, being
the profile a gaussian convolved with a square.

The fits are made in parallel, being the number of processes controlled by the parameter processes,
with the default value of 0 meaning to use the number of cores minus 2 if the number of cores is
greater or equal to 4, one process otherwise.

After the columns are fitted, the profiles (central position and sigma) are interpolated to all
columns using splines. The coefficientes of the splines are stored in the final master_traces object.

The recipe returns also the RSS obtained by applying advanced extraction to reduced_image. As
an intermediate result, the recipe proceduces DS9 reg files with the position of the center of the
profiles, that can be used with raw and reduced images.

class ModelMapRecipeInput(*args, **kwds)
ModelMapRecipeInput documentation.

Attributes

debug_plot [int, requirement, optional] Save intermediate tracing plots

master_bias [MasterBias, requirement] Master BIAS image

master_bpm [MasterBPM, requirement, optional] Master Bad Pixel Mask

master_dark [MasterDark, requirement, optional] Master DARK image

master_slitflat [MasterSlitFlat, requirement, optional] Master slit flat calibration

master_traces [TraceMap, requirement] Trace information of the Apertures

obresult [ObservationResultType, requirement] Observation Result

processes [int, requirement, optional] Number of processes used for fitting

class ModelMapRecipeResult(*args, **kwds)
ModelMapRecipeResult documentation.

26 Chapter 5. Observing modes

MEGARA Pipeline Documentation, Release 0.8.dev0

Attributes

master_model [ModelMap, product]

qc [QualityControlProduct, product]

reduced_image [ProcessedImage, product]

reduced_rss [ProcessedRSS, product]

RecipeInput
alias of numina.core.metaclass.ModelMapRecipeInput

RecipeResult
alias of numina.core.metaclass.ModelMapRecipeResult

5.1.6 Arc

Mode Arc

Usage Offline, Online

Key MegaraArcCalibration

Product WavelengthCalibration

Recipe ArcCalibrationRecipe

Recipe input ArcCalibrationRecipeInput

Recipe result ArcCalibrationRecipeResult

This mode sequence includes the required actions to translate the geometrical position of each point in
the detector into physical units of wavelength. The calibration is performed by means of using refer-
ence calibration lamps (arc lamps) that should be part of the Instrument Calibration Module (ICM) at
F-C. Note that the optical distortions in the spectrograph will lead to different wavelength calibrations
from each individual fiber, therefore the entire focal plane should be illuminated by the corresponding
arc lamp of choice. Given the relatively high spectral resolution and broad wavelength coverage of
MEGARA we anticipate that more than one arc lamp will be needed at the ICM. The lamps at ICM
have to deliver enough bright spectral lines for calibrating the whole range of MEGARA spectral reso-
lutions and wavelength ranges (for HR modes only two VPHs shall be provided by MEGARA but more
gratings could come funded by GTC users). MEGARA has provided a whole review of the possible il-
lumination systems in the document TEC/MEG/151, but the responsibility of the development of the
ICM module is on the GTC side.

Requirements

The entire focal plane should be illuminated with light from the ICM arc lamp with the required input
focal ratio. This mode requires having the ICM turned on, one of the arc lamps at the ICM also turned
on, the focal-plane cover configured (at least one of the sides should be open), the instrument shutter
open, to move the pseudo-slit to that of the instrument mode of choice, to configure the VPH wheel
mechanism in order to select the grating to be used, to move the focusing mechanism to the position
pre-defined for the specific VPH of choice and to expose a certain time and to readout the detector a
series of exposures, being this series the arc image set.

Procedure

The “User” processes an observing block obtained in the observing mode Arc. This mode includes the
required actions to translate the geometrical position of each point in the detector into physical units of
wavelength. The wavelength calibration generated is used in other stages of the data processing.

5.1. Calibration Modes 27

MEGARA Pipeline Documentation, Release 0.8.dev0

Products

Arc image sets are to be obtained both as part of the activities related to the verification of the instrument
status and for processing data for scientific exploitation and are part of the “Daily Calibration Modes”.

A data structure containing information about wavelength calibrations (the format is TBD), a QA flag,
a text log file of the processing and a structured text file containing information about the processing.

Recipe, inputs and results

class megaradrp.recipes.calibration.arc.ArcCalibrationRecipe(*args,
**kwargs)

Provides wavelength calibration information from arc images.

This recipes process a set of arc images obtained in Arc Calibration mode and returns the informa-
tion required to perform wavelength calibration and resampling in other recipes, in the form of
a WavelengthCalibration object. The recipe also returns a 2D map of the FWHM of the arc lines
used for the calibration, the result images up to dark correction, and the result of the processing
up to aperture extraction.

See also:

megaradrp.products.WavelengthCalibration description of WavelengthCalibration
product

megaradrp.products.LinesCatalog description of the catalog of lines

megaradrp.processing.aperture aperture extraction

numina.array.wavecalib.arccalibration20 wavelength calibration algorithm

megaradrp.instrument.configs instrument configuration

Notes

Images provided in obresult are trimmed and corrected from overscan, bad pixel mask (if mas-
ter_bpm is not None), bias and dark current (if master_dark is not None). Images thus corrected are
the stacked using the median.

The result of the combination is saved as an intermediate result, named ‘reduced_image.fits’. This
combined image is also returned in the field reduced_image of the recipe result.

The apertures in the 2D image are extracted, using the information in master_traces. the result of
the extraction is saved as an intermediate result named ‘reduced_rss.fits’. This RSS is also returned
in the field reduced_rss of the recipe result.

For each fiber in the reduced RSS, the peaks are detected and sorted by peak flux. nlines is used
to select the brightest peaks. If it is a list, then the peaks are divided, by their position, in as many
groups as elements in the list and nlines[0] peaks are selected in the first group, nlines[1] peaks in
the second, etc.

The selected peaks are matched against the catalog of lines in lines_catalog. The matched lines,
the quality of the match and other relevant information is stored in the product Wavelength-
Calibration object. The wavelength of the matched features is fitted to a polynomial of degree
polynomial_degree. The coefficients of the polynomial are stored in the final master_wlcalib object
for each fiber.

class ArcCalibrationRecipeInput(*args, **kwds)
ArcCalibrationRecipeInput documentation.

Attributes
20 https://numina.readthedocs.io/en/latest/reference/array.html#module-numina.array.wavecalib.arccalibration

28 Chapter 5. Observing modes

https://numina.readthedocs.io/en/latest/reference/array.html#module-numina.array.wavecalib.arccalibration

MEGARA Pipeline Documentation, Release 0.8.dev0

debug_plot [int, requirement, optional] Save intermediate tracing plots

extraction_offset [ListOfType, requirement, optional, default=[0.0]] Offset
traces for extraction

lines_catalog [MegaraLinesCatalog, requirement] Catalog of lines

master_apertures [MultiType, requirement] Apertures information for extrac-
tion

master_bias [MasterBias, requirement] Master BIAS image

master_bpm [MasterBPM, requirement, optional] Master Bad Pixel Mask

master_dark [MasterDark, requirement, optional] Master DARK image

nlines [ListOfType, requirement, optional, default=[20]] Use the ‘nlines’ brigth-
est lines of the spectrum

obresult [ObservationResultType, requirement] Observation Result

polynomial_degree [ListOfType, requirement, optional, default=[5]] Polyno-
mial degree of arc calibration

store_pdf_with_refined_fits [int, requirement, optional] Store PDF plot with re-
fined fits for each fiber

class ArcCalibrationRecipeResult(*args, **kwds)
ArcCalibrationRecipeResult documentation.

Attributes

fwhm_image [DataFrameType, product]

master_wlcalib [WavelengthCalibration, product]

qc [QualityControlProduct, product]

reduced_image [ProcessedFrame, product]

reduced_rss [ProcessedRSS, product]

RecipeInput
alias of numina.core.metaclass.ArcCalibrationRecipeInput

RecipeResult
alias of numina.core.metaclass.ArcCalibrationRecipeResult

calc_fwhm_of_line(row, peak_int, lwidth=20)
Compute FWHM of lines in spectra

model_coeff_vs_fiber(data_wlcalib, poldeg, times_sigma_reject=5, debugplot=0)
Model polynomial coefficients vs. fiber number.

For each polynomial coefficient, a smooth polynomial dependence with fiber number is also
computed, rejecting information from fibers which coefficients depart from that smooth vari-
ation.

run(rinput)
Execute the recipe.

Parameters

rinput [ArcCalibrationRecipe.RecipeInput]

Returns

ArcCalibrationRecipe.RecipeResult

5.1. Calibration Modes 29

MEGARA Pipeline Documentation, Release 0.8.dev0

5.1.7 Fiber-flat

Mode Fiber-flat

Usage Offline, Online

Key MegaraFiberFlatImage

Product MasterFiberFlat

Recipe FiberFlatRecipe

Recipe input FiberFlatRecipeInput

Recipe result FiberFlatRecipeResult

In fiber-fed spectrographs such as MEGARA each optical fiber behaves like a different optical system,
and therefore, its optical transmission is different and individual, with different wavelength depen-
dence. In the Preliminary Design phase this mode was named “Lamp fiber flat”.

Requirements

This observing mode should include the actions to calibrate the low-frequency variations in transmis-
sion in between fibers and as a function of wavelength in MEGARA. A fiber-flat should be used to
perform this correction and is the result of illuminating the instrument focal plane with a flat source
that can be either a continuum (halogen) lamp that is part of the GTC Instrument Calibration Module
(ICM) or the twilight sky. The fiber-flat observing mode discussed here assumes that the focal plane is
illuminated with a halogen lamp located at the ICM. The ICM beam has to have the same focal ratio
arriving to the first MEGARA optical element (the MEGARA telecentricity-correction lens in this case)
simulating as much as possible the real GTC mirrors beam at F-C.

These fiber-flat images are also used to trace the fiber spectra on the detector for each specific spectral
setup. Finally, they are also useful to verify the status of the optical link between the F-C focal plane
and the platform where the spectrographs are located.

This mode requires having the ICM turned on, one of the halogen lamps at the ICM also turned on, to
configure the focal-plane cover (at least one of the sides should be open), to have the instrument shutter
open, to move the pseudo-slit to that of the instrument mode of choice, to configure the VPH wheel
mechanism in order to select the grating to be used, to move the focusing mechanism to the position
pre-defined for the specific VPH of choice and to expose a certain time and to readout the detector a
series of exposures, being this series the fiber-flat image set.

Procedure

The “User” processes an observing block obtained in the observing mode Fiber-flat. This mode includes
the required actions to obtain a master fiber-flat field. The master fiber-flat field generated is used in
other stages of the data processing.

Products

Fiber-flat image sets are to be obtained both as part of the activities related to the verification of the
instrument status and for processing data for scientific exploitation.

Recipe, inputs and results

class megaradrp.recipes.calibration.flat.FiberFlatRecipe(*args, **kwargs)
Process FIBER_FLAT images and create MASTER_FIBER_FLAT product.

30 Chapter 5. Observing modes

MEGARA Pipeline Documentation, Release 0.8.dev0

This recipe process a set of continuum flat images obtained in Fiber Flat mode and returns the
master fiber flat product The recipe also returns the result of processing the input images up to
slitflat correction. and the result RSS of the processing up to wavelength calibration.

See also:

megaradrp.products.MasterFiberFlat description of MasterFiberFlat product

megaradrp.processing.aperture aperture extraction

megaradrp.processing.wavecalibration resampling for wavelength calibration

Notes

Images provided in obresult are trimmed and corrected from overscan, bad pixel mask (if mas-
ter_bpm is not None), bias and dark current (if master_dark is not None) and corrected from pixel-
to-pixel flat if master_slitflat is not None. Images thus corrected are the stacked using the median.

The result of the combination is saved as an intermediate result, named ‘reduced_image.fits’. This
combined image is also returned in the field reduced_image of the recipe result.

The apertures in the 2D image are extracted, using the information in master_traces and resampled
accoding to the wavelength calibration in master_wlcalib. The resulting RSS is saved as an inter-
mediate result named ‘reduced_rss.fits’. This RSS is also returned in the field reduced_rss of the
recipe result.

To normalize the master_fiberflat, each fiber is divided by a smoothed version (using a Savitzky-
Golay filter) of the average of the valid fibers. Finally, all the pixels with information are fiiled
with ones. This RSS image is returned in the field master_fiberflat of the recipe result.

class FiberFlatRecipeInput(*args, **kwds)
FiberFlatRecipeInput documentation.

Attributes

extraction_offset [ListOfType, requirement, optional, default=[0.0]] Offset
traces for extraction

master_bias [MasterBias, requirement] Master BIAS image

master_bpm [MasterBPM, requirement, optional] Master Bad Pixel Mask

master_dark [MasterDark, requirement, optional] Master DARK image

master_slitflat [MasterSlitFlat, requirement, optional] Master slit flat calibration

master_traces [MultiType, requirement] Apertures information for extraction

master_wlcalib [WavelengthCalibration, requirement] Wavelength calibration
table

obresult [ObservationResultType, requirement] Observation Result

smoothing_window [int, requirement, optional, default=31] Window for
smoothing (must be odd)

class FiberFlatRecipeResult(*args, **kwds)
FiberFlatRecipeResult documentation.

Attributes

master_fiberflat [MasterFiberFlat, product]

qc [QualityControlProduct, product]

reduced_image [ProcessedFrame, product]

reduced_rss [ProcessedRSS, product]

5.1. Calibration Modes 31

MEGARA Pipeline Documentation, Release 0.8.dev0

RecipeInput
alias of numina.core.metaclass.FiberFlatRecipeInput

RecipeResult
alias of numina.core.metaclass.FiberFlatRecipeResult

run(rinput)
Execute the recipe.

Parameters

rinput [RecipeInput]

Returns

RecipeResult

set_base_headers(hdr)
Set metadata in FITS headers.

5.1.8 Twilight fiber-flat

Mode Twilight fiber-flat

Usage Offline, Online

Key MegaraTwilightFlatImage

Product MasterTwilightFlat

Recipe TwilightFiberFlatRecipe

Recipe input megaradrp.recipes.calibration.twilight.RecipeInput

Recipe result megaradrp.recipes.calibration.twilight.RecipeResult

Depending on the final performance of the ICM (provided by the GTC) at F-C the twilight fiber-flat
mode (proposed in this section) might be offered as optional to the observer or a must should a proper
data reduction be required. In any case this must be always available as an observing mode.

The twilight fiber-flat observing mode should include the actions required to calibrate the low-
frequency sensitivity variation in the spatial direction of the detector. In principle, the lamp fiber-flat
should suffice to correct the change in sensitivity along both the spatial (fiber-to-fiber relative trans-
mission) and the spectral direction of the system. The latter only combined with flux standard-star
observations since the spectral shape of the ICM lamps is not known with enough accuracy.

The twilight fiber-flat is based on the observation of the blank twilight sky. This can safely assume to
homogeneously illuminate the entire MEGARA field of view (3.5 arcmin x 3.5 arcmin).

Requeriments

The focal plane should be uniformly illuminated with twilight-sky light. As the illumination conditions
change during twilight, each image set has a different exposure time. The purpose is to obtain a similar
(linear) level of DUs at the detector (counts) under different illumination conditions.

This mode requires having the focal-plane cover configured (at least one of the sides should be open),
the instrument shutter open, the telescope tracking, to move the pseudo-slit to that of the instrument
mode of choice, to configure the VPH wheel mechanism in order to select the grating to be used, to
move the focusing mechanism to the position pre-defined for the specific VPH of choice and to take a
series of exposures with different exposure times and to readout the detector for this series of exposures,
being these series the twilight image set, each with a different exposure time, but with similar level of
counts.

32 Chapter 5. Observing modes

MEGARA Pipeline Documentation, Release 0.8.dev0

Procedure

The “User” processes an observing block obtained in the observing mode Twilight Fiber Flat. This mode
includes the required actions to obtain a master illumination flat field. The master illumination flat field
generated is used in other stages of the data processing.

Products

Twilight-sky fiber-flat image sets are expected to be obtained as part of the routine calibration activities
performed by the observer since are needed for processing any scientific-valid data. Therefore, this
observing mode should be considered as part of the “Daily Calibration Modes”.

A RSS master illumination flat field, QA flag, a text log file of the processing and a structured text file
containing information about the processing.

Recipe, inputs and results

class megaradrp.recipes.calibration.twilight.RecipeInput(*args, **kwds)
RecipeInput documentation.

Attributes

continuum_region [ListOfType, requirement, optional, default=[1900, 1900]] Sub-
tract this region before normalize the flat-field

extraction_offset [ListOfType, requirement, optional, default=[0.0]] Offset traces
for extraction

master_bias [MasterBias, requirement] Master BIAS image

master_bpm [MasterBPM, requirement, optional] Master Bad Pixel Mask

master_dark [MasterDark, requirement, optional] Master DARK image

master_fiberflat [MasterFiberFlat, requirement] Master fiber flat calibration

master_slitflat [MasterSlitFlat, requirement, optional] Master slit flat calibration

master_traces [MultiType, requirement] Apertures information for extraction

master_wlcalib [WavelengthCalibration, requirement] Wavelength calibration ta-
ble

normalize_region [ListOfType, requirement, optional, default=[1900, 2100]] Re-
gion used to normalize the flat-field

obresult [ObservationResultType, requirement] Observation Result

class megaradrp.recipes.calibration.twilight.RecipeResult(*args, **kwds)
RecipeResult documentation.

Attributes

master_twilightflat [MasterTwilightFlat, product]

reduced_image [ProcessedFrame, product]

reduced_rss [ProcessedRSS, product]

class megaradrp.recipes.calibration.twilight.TwilightFiberFlatRecipe(*args,
**kwargs)

Process TWILIGHT_FLAT images and create MASTER_TWILIGHT_FLAT product.

This recipe process a set of continuum flat images obtained in Twilight Fiber Flat mode and
returns the master twilight flat product The recipe also returns the result of processing the input
images up to slitflat correction. and the result RSS of the processing up to wavelength calibration.

5.1. Calibration Modes 33

MEGARA Pipeline Documentation, Release 0.8.dev0

See also:

megaradrp.types.MasterTwilightFlat description of MasterTwilightFlat product

Notes

Images provided in obresult are trimmed and corrected from overscan, bad pixel mask (if mas-
ter_bpm is not None), bias and dark current (if master_dark is not None) and corrected from pixel-
to-pixel flat if master_slitflat is not None. Images thus corrected are the stacked using the median.

The result of the combination is saved as an intermediate result, named ‘reduced_image.fits’. This
combined image is also returned in the field reduced_image of the recipe result.

The apertures in the 2D image are extracted, using the information in master_traces and resampled
according to the wavelength calibration in master_wlcalib. Then is divided by the master_fiberflat.
The resulting RSS is saved as an intermediate result named ‘reduced_rss.fits’. This RSS is also
returned in the field reduced_rss of the recipe result.

To normalize the master_twilight_flat, each fiber is divided by the average of the column range
given in normalize_region. This RSS image is returned in the field master_twilightflat of the recipe
result.

class MegaraBaseRecipeInput(*args, **kwds)
MegaraBaseRecipeInput documentation.

Attributes

obresult [ObservationResultType, requirement] Observation Result

class MegaraBaseRecipeResult(*args, **kwds)
MegaraBaseRecipeResult documentation.

Attributes

qc [QualityControlProduct, product]

class RecipeInput(*args, **kwds)
RecipeInput documentation.

Attributes

continuum_region [ListOfType, requirement, optional, default=[1900, 1900]]
Subtract this region before normalize the flat-field

extraction_offset [ListOfType, requirement, optional, default=[0.0]] Offset
traces for extraction

master_bias [MasterBias, requirement] Master BIAS image

master_bpm [MasterBPM, requirement, optional] Master Bad Pixel Mask

master_dark [MasterDark, requirement, optional] Master DARK image

master_fiberflat [MasterFiberFlat, requirement] Master fiber flat calibration

master_slitflat [MasterSlitFlat, requirement, optional] Master slit flat calibration

master_traces [MultiType, requirement] Apertures information for extraction

master_wlcalib [WavelengthCalibration, requirement] Wavelength calibration
table

normalize_region [ListOfType, requirement, optional, default=[1900, 2100]]
Region used to normalize the flat-field

obresult [ObservationResultType, requirement] Observation Result

class RecipeResult(*args, **kwds)
RecipeResult documentation.

34 Chapter 5. Observing modes

MEGARA Pipeline Documentation, Release 0.8.dev0

Attributes

master_twilightflat [MasterTwilightFlat, product]

reduced_image [ProcessedFrame, product]

reduced_rss [ProcessedRSS, product]

set_base_headers(hdr)
Set metadata in FITS headers.

5.1.9 Bad-pixels mask

Mode Bad-pixels mask

Usage Offline, Online

Key MegaraBadPixelMask

Product MasterBPM

Recipe BadPixelsMaskRecipe

Recipe input BadPixelsMaskRecipeInput

Recipe result BadPixelsMaskRecipeResult

Although science-grade CCD detectors show very few bad pixels / bad columns there will be a number
of pixels (among the ~17 Million pixels in the MEGARA CCD) whose response could not be corrected
by means of using calibration images such as dark frames or flat-field images. These pixels, commonly
called either dead or hot pixels, should be identified and masked so their expected signal could be
derived using dithered images or, alternatively, locally interpolated. While a bad-pixels mask will be
generated as part of the AIV activities, an increase in the number of such bad pixels with time is ex-
pected. Therefore, we here define an observing mode that the observatory staff could use to generate
an updated version of the bad-pixels masks should the number of bad pixels increase significantly.

In the case of fiber-fed spectrographs the fiber flats (either lamp or twilight flats) are not optimal for
generating bad-pixels masks as these leave many regions in the CCD not exposed to light. The whole
CCD should be illuminated at different intensity levels in order to clearly identify both dead and hot
pixels.

Requirements

In the case of MEGARA we will offset the pseudo-slit from its optical focus position to ensure that
the gaps between fibers are also illuminated when a continuum (halogen) lamp at the ICM is used.
The NSC zemax model of the spectrograph indicates that by offsetting 3mm the pseudo-slit we would
already obtain a homogenous illumination of the CCD. A series of images with different count levels
would be obtained.

This mode requires having the ICM halogen lamp on, the instrument shutter open, to move the pseudo-
slit to the open position, to configure the VPH wheel mechanism in order to select the grating to be used,
to move the focusing mechanism to the position pre-defined for the specific VPH of choice but offset
by 3mm and to expose a certain time and to readout the detector a series of exposures, being this series
the slit-flat image set. Note that only one Bad-pixels mask will be used for all spectral setups. The
specific choice for the VPH will depend on the actual color of the ICM halogen lamp and on the actual
response of the VPHs. In principle, we should choose the VPH at the peak of the lamp spectral energy
distribution but we should also consider the fact that the VPH should have the flattest spectral response
possible. We call this specific VPH the “BPM VPH”. LR-R and LR-I are currently the best candidates
for finally being the BPM VPH.

5.1. Calibration Modes 35

MEGARA Pipeline Documentation, Release 0.8.dev0

Procedure

The “User” processes an observing block obtained in the observing mode Bad-pixels mask. This mode
includes the required actions to obtain a bad-pixel mask. The master bad pixel mask generated is used
in other stages of the data processing.

Products

This Bad-pixels mask observing mode will be used only sporadically as it is considered part of the
“System Calibration Modes”.

A bidimensional mask of bad pixels, a QA flag, a text log file of the processing and a structured text file
with information about the processing.

Recipe, inputs and results

class megaradrp.recipes.calibration.bpm.BadPixelsMaskRecipe(*args, **kwargs)
Process defocussed FIBER_FLAT images and create MASTER_BPM product.

This recipe process a set of defocused continuum flat images obtained in Bad-pixels mask mode
and returns the master bad-pixels mask product.

See also:

numina.array.cosmetics.ccdmask21 algorithm to select bad-pixels

megaradrp.types.MasterBPM description of MasterBPM product

Notes

Images provided in obresult are trimmed and corrected from overscan, bias and dark current (if
master_dark is not None). The first half of the images are the stacked using the median and saved
as intermediate result ‘reduced_image_1.fits’. The second half is also combined and saved as
intermediate result ‘reduced_image_2.fits’

These two images are passed to the ccdmask function, that selects bad-pixels by finding outliers in
the ratio of the two images.

The mask is returned in the field master_bpm of the recipe result.

class BadPixelsMaskRecipeInput(*args, **kwds)
BadPixelsMaskRecipeInput documentation.

Attributes

master_bias [MasterBias, requirement] Master BIAS image

master_dark [MasterDark, requirement, optional] Master DARK image

obresult [ObservationResultType, requirement] Observation Result

class BadPixelsMaskRecipeResult(*args, **kwds)
BadPixelsMaskRecipeResult documentation.

Attributes

master_bpm [MasterBPM, product]

qc [QualityControlProduct, product]

RecipeInput
alias of numina.core.metaclass.BadPixelsMaskRecipeInput

21 https://numina.readthedocs.io/en/latest/reference/array.html#numina.array.cosmetics.ccdmask

36 Chapter 5. Observing modes

https://numina.readthedocs.io/en/latest/reference/array.html#numina.array.cosmetics.ccdmask

MEGARA Pipeline Documentation, Release 0.8.dev0

RecipeResult
alias of numina.core.metaclass.BadPixelsMaskRecipeResult

set_base_headers(hdr)
Set metadata in FITS headers.

validate_input(recipe_input)
Validate input of the recipe.

The number of frames in recipe_input.obresult must be even.

Raises

numina.exceptions.ValidationError If the number of frames in obresult is odd

class BadPixelsMaskRecipe.BadPixelsMaskRecipeInput(*args, **kwds)
BadPixelsMaskRecipeInput documentation.

Attributes

master_bias [MasterBias, requirement] Master BIAS image

master_dark [MasterDark, requirement, optional] Master DARK image

obresult [ObservationResultType, requirement] Observation Result

class BadPixelsMaskRecipe.BadPixelsMaskRecipeResult(*args, **kwds)
BadPixelsMaskRecipeResult documentation.

Attributes

master_bpm [MasterBPM, product]

qc [QualityControlProduct, product]

5.1.10 Linearity test

Mode Linearity test

Usage Offline, Online

Key MegaraLinearityTest

Product

Recipe LinearityTestRecipe

Recipe input LinearityTestRecipeInput

Recipe result LinearityTestRecipeResult

Although the linearity of the MEGARA CCD are well characterized at the LICA lab already, it might
be advisable to generate linearity test frames both as part of the AIV activities and after changes in the
MEGARA DAS.

The MEGARA e2V 231-84 CCD offers a full-well capacity of 350,000 ke-. Linearity tests carried out in
instruments already using this type of CCD indicate a linearity better than ±0.4% at 100 kpix/sec in the
range between 140 to 40,000 e- (Reiss et al. 2009 for MUSE@VLT). Given these good linearity results (up
to 40,000 e-) and considering the fact that at the spectral resolutions of MEGARA we will rarely reach
those signals from astronomical targets linearity can be considered negligible. Despite these facts, it is
advisable to carry out this kind of tests both at the lab and at the telescope on the MEGARA CCD itself.

While Linearity tests will be generated as part of the characterization activities at the lab, the use of the
ICM would also allow carrying them out as part of AIV activities and routinely as part of the “System
Calibration Modes”. Therefore, we define here an observing mode that the observatory staff could use
to generate updated Linearity tests should these be needed.

5.1. Calibration Modes 37

mailto:MUSE@VLT

MEGARA Pipeline Documentation, Release 0.8.dev0

In the case of fiber-fed spectrographs the fiber flats (either lamp or twilight flats) are not optimal for
carrying out Linearity tests as these leave many regions in the CCD not exposed to light. The whole
CCD should be illuminated at different intensity levels in order for properly carrying out these tests.

Requirements

In the case of MEGARA we will offset the pseudo-slit from its optical focus position to ensure that
the gaps between fibers are also illuminated when a continuum (halogen) lamp at the ICM is used.
The NSC zemax model of the spectrograph indicates that by offsetting 3mm the pseudo-slit we would
already obtain a homogenous illumination of the CCD. A series of images with different count levels
would be obtained.

This mode requires having the ICM halogen lamp on, the instrument shutter open, to move the pseudo-
slit to the open position, to configure the VPH wheel mechanism in order to select the grating to be
used, to move the focusing mechanism to the position pre-defined for the specific VPH of choice and
to expose a certain time and to readout the detector a series of exposures, being this series the slit-flat
image set. Note that the Linearity test will be done using only one spectral setup as this is independent
of the VPH of use. The specific choice for the VPH will depend on the actual color of the ICM halogen
lamp and on the actual response of the VPHs. In principle, we should choose the VPH at the peak of
the lamp spectral energy distribution but we

Procedure

Products

This Linearity-test observing mode will be used only sporadically as it is considered part of the “System
Calibration Modes”.

Recipe, inputs and results

5.1.11 Standard star with the LCB IFU

Mode Standard star with the LCB IFU

Usage Offline, Online

Key MegaraLcbStdStar

Recipe LCBStandardRecipe

Recipe input LCBStandardRecipeInput

Recipe result LCBStandardRecipeResult

This observing mode includes the required actions to obtain those calibration images needed to correct
for the variation in the response of the system along the spectral direction. This signature is manifested
by a change in the conversion factor between the energy surface density hitting the telescope primary
mirror and the DUs per CCD pixel with wavelength. Its effect is already present in the original data but
it could get modified during the reduction process, e.g. after the fiber-flat correction is applied.

The flux calibration is performed by observing one or several spectrophotometric stars with the same
instrument configuration that for the scientific observations. Depending on the number of standard
stars observed and on the weather conditions (mainly transparency) two different types of calibration
could be achieved:

• Absolute-flux calibration: The weather conditions during the night should be photometric and
a number of spectrophotometric standard stars at different airmasses should be observed. This
allows to fully correct from DUs per CCD pixel to energy surface density (typically in erg s-1 cm-2
Å-1) incident at the top of the atmosphere. If only one single standard star is observed (at the
airmass of the science object) this correction allows deriving the energy surface density hitting the

38 Chapter 5. Observing modes

MEGARA Pipeline Documentation, Release 0.8.dev0

telescope primary mirror exclusively, unless an atmospheric extinction curve for the observatory
and that particular night is assumed. In order to properly flux-calibrate scientific observations at
all airmasses several stars should be observed during the night.

• Relative-flux calibration: If the weather conditions are not photometric this correction only allows
normalizing the DUs per CCD pixel along the spectral direction so the conversion to incident en-
ergy at the top of the atmosphere is the same at all wavelengths. In order for this calibration to be
valid the assumption that the effect of the atmosphere (including atmospheric cirrus and possibly
thick clouds) on the wavelength dependence of this correction is that given by the atmospheric
extinction curve adopted.

Since the observing sequence needed for both types of flux calibration is identical only one observing
mode (standard star) needs to be defined.

We will use this same observing mode also for the observation of either telluric standards or radial-
velocity standards. The former are needed to correct for the presence of telluric absorptions mainly in
the red part of the spectrum and are achieved by means of observing A-type stars at the same airmass
and very close in time to the corresponding scientific observation. The latter can used to determine a
precise zero point velocity for the instrument at a specific night and to verify its stability from night to
night and season to season.

Requirements

This mode requires the entire flux of the spectrophotometric standard star to be recovered (even if the
star is a telluric or radial-velocity standard), especially when an absolute-flux calibration is needed, so
the LCB IFU bundle must be used. The FOV of the LCB IFU is large enough for these observations to
be carried out with one of the sides of the focal-plane cover closed. When this calibration is aimed for
a set of Fiber-MOS scientific observations, complementary observations of standard stars through the
Fiber-MOS minibundles might be also required. This allows verifying the quality and stability of the
calibration when two different pseudo-slits are used. Such observing mode is described later.

This mode requires having the focal-plane cover configured (at least one of the sides should be open),
the instrument shutter open, to configure the VPH mechanism to select the grating to be used, to set
the instrument mode to LCB IFU, to move the focusing mechanism to the position pre-defined for the
specific VPH of choice, and to expose a certain time and to readout the detector in a series of exposures,
being this series the image set containing the spectral energy distribution of the spectrophotometric
standard star.

In order to distribute the flux from the star across multiple spaxels in the LCB IFU bundle (particularly
important in the case of very bright spectrophotometric standard stars) we might also need to apply a
small drift motion (typically of a few arcsec per second) to one of the telescope axes at the start of the
observation or, more likely, slightly defocus the telescope.

Products

Standard star image sets are to be obtained only as part of the routine calibration activities performed
by the observer and that are needed for processing data for scientific exploitation.

Recipe, inputs and results

class megaradrp.recipes.calibration.lcbstdstar.LCBStandardRecipe(*args,
**kwargs)

Process LCB Standard Star Recipe.

This recipe processes a set of images obtained in LCB Stardard Star image mode and returns the
total flux of the star.

See also:

megaradrp.recipes.calibration.mosstdstar.MOSStandardRecipe

5.1. Calibration Modes 39

MEGARA Pipeline Documentation, Release 0.8.dev0

Notes

Images provided by obresult are trimmed and corrected from overscan, bad pixel mask (if mas-
ter_bpm is not None), bias, dark current (if master_dark is not None) and slit-flat (if master_slitflat is
not None).

Images thus corrected are then stacked using the median. The result of the combination is saved
as an intermediate result, named ‘reduced_image.fits’. This combined image is also returned in
the field reduced_image of the recipe result.

The apertures in the 2D image are extracted, using the information in master_traces and resampled
according to the wavelength calibration in master_wlcalib. Then is divided by the master_fiberflat.
The resulting RSS is saved as an intermediate result named ‘reduced_rss.fits’. This RSS is also
returned in the field reduced_rss of the recipe result.

The sky is subtracted by combining the the fibers marked as SKY in the fibers configuration. The
RSS with sky subtracted is returned ini the field final_rss of the recipe result.

The flux of the star is computed by adding summing the fibers in nrings around the central spaxel
containing the star and returned as star_spectrum.

class LCBStandardRecipeInput(*args, **kwds)
LCBStandardRecipeInput documentation.

Attributes

extraction_offset [ListOfType, requirement, optional, default=[0.0]] Offset
traces for extraction

ignored_sky_bundles [ListOfType, requirement, optional] Ignore these sky
bundles

master_bias [MasterBias, requirement] Master BIAS image

master_bpm [MasterBPM, requirement, optional] Master Bad Pixel Mask

master_dark [MasterDark, requirement, optional] Master DARK image

master_fiberflat [MasterFiberFlat, requirement] Master fiber flat calibration

master_sensitivity [MasterSensitivity, requirement, optional] Master sensitivity
for flux calibration

master_slitflat [MasterSlitFlat, requirement, optional] Master slit flat calibration

master_traces [MultiType, requirement] Apertures information for extraction

master_twilight [MasterTwilightFlat, requirement, optional] Master twlight flat
calibration

master_wlcalib [WavelengthCalibration, requirement] Wavelength calibration
table

nrings [int, requirement, optional, default=3] Number of rings to extract the
star

obresult [ObservationResultType, requirement] Observation Result

position [list, requirement] Position of the reference object

reference_extinction [ReferenceExtinctionTable, requirement] Reference ex-
tinction

reference_spectrum [ReferenceSpectrumTable, requirement] Spectrum of refer-
ence star

reference_spectrum_velocity [float, requirement, optional] Radial velocity
(km/s) of reference spectrum

40 Chapter 5. Observing modes

MEGARA Pipeline Documentation, Release 0.8.dev0

relative_threshold [float, requirement, optional, default=0.3] Threshold for
peak detection

sigma_resolution [float, requirement, optional, default=20.0] sigma Gaussian
filter to degrade resolution

class LCBStandardRecipeResult(*args, **kwds)
LCBStandardRecipeResult documentation.

Attributes

fiber_ids [ArrayType, product]

final_rss [ProcessedRSS, product]

master_sensitivity [MasterSensitivity, product]

qc [QualityControlProduct, product]

reduced_image [ProcessedFrame, product]

reduced_rss [ProcessedRSS, product]

sky_rss [ProcessedRSS, product]

star_spectrum [ProcessedSpectrum, product]

RecipeInput
alias of numina.core.metaclass.LCBStandardRecipeInput

RecipeResult
alias of numina.core.metaclass.LCBStandardRecipeResult

5.1.12 Standard star with the Fiber MOS

Mode Standard star with the FIBER MOS

Usage Offline, Online

Key MegaraMosStdStar

Recipe MOSStandardRecipe

Recipe input MOSStandardRecipeInput

Recipe result MOSStandardRecipeResult

This observing mode includes the required actions to obtain those calibration images needed to correct
for the variation in the response of the system along the spectral direction. The difference between this
mode and the two precedent observing modes is that in this case the spectrophotometric standard star
is observed through one of the robotic positioners of the Fiber-MOS subsystem.

As in Standard star with the IFUs observing modes, the calibration is performed by observing one or
several spectrophotometric stars with the same instrument configuration that for the scientific observa-
tions. Depending on the number of standard stars observed and the weather conditions two different
types of calibration could be achieved, absolute or relative. In the case of the former calibration an aper-
ture correction should be applied to take into account the possible flux losses from the standard stars
when observed through one of the ~1.6-arcsec-wide robotic positioners.

Requirements

This mode requires having the focal-plane cover configured, the instrument shutter open, to configure
the VPH mechanism to select the grating to be used, to set the instrument mode to Fiber MOS, to move
the focusing mechanism to the position pre-defined for the specific VPH of choice, to move one of the
robotic positioners to the position of the spectrophotometric standard star (other positioners could be
also moved if needed) and to expose a certain time and to readout the detector in a series of exposures,

5.1. Calibration Modes 41

MEGARA Pipeline Documentation, Release 0.8.dev0

being this series the image set containing the spectral energy distribution of the spectrophotometric
standard star.

This observing mode could still be carried out with one of the sides of the focal-plane cover closed.
However, as the (commonly rather bright) spectrophotometric standard star is the only object of interest
in the field, the other positioners would not be observing scientific targets, so the level of cross-talk
between these and the positioner devoted to the standard star should be negligible. Thus, the use of the
focal-plane cover, although considered, is not recommended for this specific observing mode.

In order to place the robotic positioner(s) on the corresponding target(s) a set of input catalogues pre-
viously generated by the observer using MOPSS (MEGARA Observing Preparation Software Suite) are
needed.

Products

Standard star image sets are to be obtained only as part of the routine calibration activities performed
by the observer that are needed for processing data for scientific exploitation.

Recipe, inputs and results

class megaradrp.recipes.calibration.mosstdstar.MOSStandardRecipe(*args,
**kwargs)

Process MOS Standard Star Recipe.

This recipe processes a set of images obtained in MOS Stardard Star image mode and returns the
total flux of the star.

See also:

megaradrp.recipes.calibration.lcbstdstar.LCBStandardRecipe

Notes

Images provided by obresult are trimmed and corrected from overscan, bad pixel mask (if mas-
ter_bpm is not None), bias, dark current (if master_dark is not None) and slit-flat (if master_slitflat is
not None).

Images thus corrected are then stacked using the median. The result of the combination is saved
as an intermediate result, named ‘reduced_image.fits’. This combined image is also returned in
the field reduced_image of the recipe result.

The apertures in the 2D image are extracted, using the information in master_traces and resampled
according to the wavelength calibration in master_wlcalib. Then is divided by the master_fiberflat.
The resulting RSS is saved as an intermediate result named ‘reduced_rss.fits’. This RSS is also
returned in the field reduced_rss of the recipe result.

The sky is subtracted by combining the the fibers marked as SKY in the fibers configuration. The
RSS with sky subtracted is returned ini the field final_rss of the recipe result.

The flux of the star is computed by adding the 7 fibers corresponding to the bundle containing the
star and returned as star_spectrum.

class MOSStandardRecipeInput(*args, **kwds)
MOSStandardRecipeInput documentation.

Attributes

extraction_offset [ListOfType, requirement, optional, default=[0.0]] Offset
traces for extraction

ignored_sky_bundles [ListOfType, requirement, optional] Ignore these sky
bundles

42 Chapter 5. Observing modes

MEGARA Pipeline Documentation, Release 0.8.dev0

master_bias [MasterBias, requirement] Master BIAS image

master_bpm [MasterBPM, requirement, optional] Master Bad Pixel Mask

master_dark [MasterDark, requirement, optional] Master DARK image

master_fiberflat [MasterFiberFlat, requirement] Master fiber flat calibration

master_sensitivity [MasterSensitivity, requirement, optional] Master sensitivity
for flux calibration

master_slitflat [MasterSlitFlat, requirement, optional] Master slit flat calibration

master_traces [MultiType, requirement] Apertures information for extraction

master_twilight [MasterTwilightFlat, requirement, optional] Master twlight flat
calibration

master_wlcalib [WavelengthCalibration, requirement] Wavelength calibration
table

obresult [ObservationResultType, requirement] Observation Result

position [list, requirement] Position of the reference object

reference_extinction [ReferenceExtinctionTable, requirement] Reference ex-
tinction

reference_spectrum [ReferenceSpectrumTable, requirement] Spectrum of refer-
ence star

reference_spectrum_velocity [float, requirement, optional] Radial velocity of
reference spectrum

relative_threshold [float, requirement, optional, default=0.3] Threshold for
peak detection

sigma_resolution [float, requirement, optional, default=20.0] sigma Gaussian
filter to degrade resolution

class MOSStandardRecipeResult(*args, **kwds)
MOSStandardRecipeResult documentation.

Attributes

fiber_ids [ArrayType, product]

final_rss [ProcessedRSS, product]

master_sensitivity [MasterSensitivity, product]

qc [QualityControlProduct, product]

reduced_image [ProcessedFrame, product]

reduced_rss [ProcessedRSS, product]

sky_rss [ProcessedRSS, product]

star_spectrum [ProcessedSpectrum, product]

RecipeInput
alias of numina.core.metaclass.MOSStandardRecipeInput

RecipeResult
alias of numina.core.metaclass.MOSStandardRecipeResult

5.1. Calibration Modes 43

MEGARA Pipeline Documentation, Release 0.8.dev0

5.2 Auxiliary Modes

The auxiliary modes refer to those tasks that are carried out in preparation for other observing modes
and that are needed to ensure the quality of the MEGARA observations. In general, these observing
modes are not useful per se, neither for straight scientific exploitation nor even data-processing pur-
poses.

These Auxiliary modes are intended to (1) allow the observatory staff to prepare the instrument for its
optimal exploitation or (2) to improve the performance of the telescope procedures in terms of the target
acquisition and focus.

With regard to the former, the following modes are defined:

• Telescope focus

• Spectrograph focus

These observing modes might have to be run before any observing run (in case of visitor mode obser-
vations) and certainly after a long period of inactivity of the instrument. Below we provide a detailed
description of each of these observing modes. Regarding the auxiliary observing modes defined to
improve the default telescope procedures these are:

• (The two previous observing modes)

• Fine acquisition with the LCB IFU

• Fine acquisition with the Fiber MOS

These latter three observing modes should be run before any observing run (in case of visitor mode
observations) and after a long period of inactivity of the instrument; at least in the instrument mode to
be used (LCB or MOS).

5.2.1 Telescope focus

Mode Telescope Focus

Usage Online

Key MegaraFocusTelescope

Recipe FocusTelescopeRecipe

Recipe input FocusTelescopeRecipeInput

Recipe result FocusTelescopeRecipeResult

This observing mode includes the required actions to focus GTC using MEGARA. A bright point source
should be identified for this purpose. This mode is an alternative to obtain the best focus of the telescope
using the A&G system. Since this mode requires having precise information on the spatial distribution
of the flux coming from a point source in a region a few arcsec in diameter the use of the LCB IFU
bundle.

Requirements

This mode requires the observation of a bright point source on the sky continuously while the observing
mode is being run. Although photometric conditions are not needed the transparency should allow to
properly measure the source FWHM on the sky in any exposure of the series. The FOV of the LCB IFU
is large enough for these observations to be carried out with one of the sides of the focal-plane cover
closed. However, as the default configuration of the instrument with the focal-plane cover in the open
position the alignment will be more likely carried out with the cover in that position.

This mode requires having the focal-plane cover configured (at least one of the sides should be open; the
most likely configuration will be with the focal-plane cover fully open), the instrument shutter open, to
configure the VPH mechanism to select the grating to be used, to set the instrument mode to LCB IFU,

44 Chapter 5. Observing modes

MEGARA Pipeline Documentation, Release 0.8.dev0

to move the focusing mechanism to the position pre-defined for the specific VPH of choice, to expose
a certain time and to readout the detector in a series of exposures, being this series the telescope focus
image set. A pause in between every exposure in the series should be introduced in order to give time
for the M2 to adjust each new focus position in the series and for the M2 control system to inform about
its new position, which should then re-start the observing sequence.

Products

The observatory staff should obtain the telescope focus image sets as part of standard preparatory
observations (according to GRANTECAN this is usually done every night). Should the focus offset
between the ASG and SFS arms (or an imaging instrument in other focus) and that of the MEGARA
FC be stable overtime, the use of this mode would be limited to the early stages of characterization of
the optimal telescope configuration for MEGARA, or after major changes in the instrument, or if any
problem arises. The observatory staff should obtain the telescope focus image sets as part of standard
preparatory observations obtained at twilight (although not necessarily every night) or when problems
with the telescope focus model are suspected. Also, telescope focus should be revised periodically (e.g.
monthly) to correct for potential temperature effects. In general, Auxiliary modes will be typically run
once every observing run (e.g. the fine-acquisition ones) or, in the best (most relaxed) case, after a long
period of inactivity.

Recipe, inputs and results

class megaradrp.recipes.auxiliary.focustel.FocusTelescopeRecipe(*args,
**kwargs)

Process telescope focus images and find best focus.

This recipe process a set of focus images obtained in Focus Telescope mode and returns an esti-
mation of the telescope best focus.

See also:

megaradrp.recipes.auxiliary.focusspec.FocusSpectrographRecipe recipe to
measure the focus of the spectrograph

Notes

Images provided in obresult are grouped by the value of their FOCUST keyword. Groups of im-
ages are trimmed and corrected from overscan, bad pixel mask (if master_bpm is not None), bias
and dark current (if master_dark is not None). Each group is then stacked using the median.

The result of the combination is saved as an intermediate result, named ‘focus2d-#focus.fits’, with
#focus being the value of the focus of each group. Apertures are extracted in each combined
image, and the resulting RSS file is saved as an intermediate result, named ‘focus1-#focus.fits’.

For each image, the FWHM of the object at position is computed.

Then, the FWHM is fitted to a 2nd degree polynomial, and the focus corresponding to its mini-
mum is obtained and returned in focus_table

class FocusTelescopeRecipeInput(*args, **kwds)
FocusTelescopeRecipeInput documentation.

Attributes

extraction_offset [ListOfType, requirement, optional, default=[0.0]] Offset
traces for extraction

ignored_sky_bundles [ListOfType, requirement, optional] Ignore these sky
bundles

master_bias [MasterBias, requirement] Master BIAS image

5.2. Auxiliary Modes 45

MEGARA Pipeline Documentation, Release 0.8.dev0

master_bpm [MasterBPM, requirement, optional] Master Bad Pixel Mask

master_dark [MasterDark, requirement, optional] Master DARK image

master_fiberflat [MasterFiberFlat, requirement] Master fiber flat calibration

master_sensitivity [MasterSensitivity, requirement, optional] Master sensitivity
for flux calibration

master_slitflat [MasterSlitFlat, requirement, optional] Master slit flat calibration

master_traces [MultiType, requirement] Apertures information for extraction

master_twilight [MasterTwilightFlat, requirement, optional] Master twlight flat
calibration

master_wlcalib [WavelengthCalibration, requirement] Wavelength calibration
table

obresult [ObservationResultType, requirement] Observation Result

position [list, requirement] Position of the reference object

reference_extinction [ReferenceExtinctionTable, requirement, optional] Refer-
ence extinction

relative_threshold [float, requirement, optional, default=0.3] Threshold for
peak detection

class FocusTelescopeRecipeResult(*args, **kwds)
FocusTelescopeRecipeResult documentation.

Attributes

focus_table [float, product]

qc [QualityControlProduct, product]

RecipeInput
alias of numina.core.metaclass.FocusTelescopeRecipeInput

RecipeResult
alias of numina.core.metaclass.FocusTelescopeRecipeResult

reorder_and_fit(all_images)
Fit all the values of FWHM to a 2nd degree polynomial and return minimum.

run_on_image(img, coors)
Extract spectra, find peaks and compute FWHM.

5.2.2 Spectrograph focus

Mode Spectrograph Focus

Usage Online

Key MegaraFocusSpectrograph

Recipe FocusSpectrographRecipe

Recipe input FocusSpectrographRecipeInput

Recipe result FocusSpectrographRecipeResult

This mode sequence includes the required actions to focus the MEGARA spectrograph. The arc lamps
from the ICM will be used for this purpose. MEGARA includes a focusing mechanism at the position
of the pseudo-slits. The best image quality for the spectrograph is achieved by using a different focus
position for each disperser element (VPH). The focus position is independent of the instrument mode
in use (TBC; see next paragraph).

46 Chapter 5. Observing modes

MEGARA Pipeline Documentation, Release 0.8.dev0

As said above, the two pseudo-slits (LCB and MOS) have to be at the same exact place at the spec-
trograph entrance to yield the same focus position. If this is not the case MEGARA can correct from
this effect by focusing with a fixed offset for all the VPHs. This value has to be added to the nominal
focusing position of a VPH with the pseudo-slit used as reference and shall be taken into account in the
MEGARA Control System look-up table. Whether these should be one look-up table (i.e. a different
focus compromise) for each focal-plane cover configuration is TBD.

Requirements

This mode requires having the focal-plane cover configured (at least one of the sides should be open),
the instrument shutter open, to configure the VPH mechanism to select the grating to be used, to set the
instrument mode to use, to move the focusing mechanism to the pre-defined focus position for specific
VPH of choice, to expose a certain time and to readout the detector in a series of exposures, being this
series the spectrograph focus image-sets. The focusing mechanism should be able to change its position
in between every two exposures in the series. A pause in between every exposure should be introduced
in order to give time for the focusing mechanism to adjust to the new focus position in the series and for
the MEGARA control system to inform about its new position, which should then re-start the observing
sequence (see below). Whether the focus positions (or range) for each VPH are already pre-defined is
TBD.

As part of the on-line quick-look software all images in the series should be pre-processed and several
spectra along the pseudo-slit should be extracted and analyzed. This analysis should include the com-
putation of the FWHM of a few unresolved spectra lines at different wavelengths. This software should
then decide based on the FWHM values computed at different wavelengths and positions along the
pseudo-slit the best focus compromise. The best focus obtained for the VPH of choice should then be
stored and used to determine the best foci for all spectral configurations (and instrument modes; TBC).

Procedure

Spectrograph focus image sets through; at least, one of the MEGARA VPHs should be obtained at the
beginning of every observing night by either the observer or the staff of the observatory (TBD). Once
a VPH is checked, the rest of the values could be corrected relative to this one. It is expected that
minor focus corrections should be done as the temperature changes. This could be modeled in further
phases and checked at laboratory and/or at the telescope. The observatory staff should obtain an entire
sequence of spectrograph focus image sets through all VPHs (and instrument modes; TBC) after major
changes in the instrument, long periods of inactivity or when the relative-focus prescriptions (i.e. the
spectrograph focus model) are suspected to be inaccurate.

The focus difference (obtained by measuring a particular VPH) will provide the offset focus (due to
temperature) and this value will be the same for all VPHs. The Control System will be prepared to
update the look-up table with this offset focus value due to temperature.

Products

The best focus, the goodness of the fit of the best focus, a table with the FWHM of the spectral line
corresponding to each focus, position along the slit and wavelength, the collapsed PSFs, QA flag, a text
log file of the processing and a structured text file containing information about the processing.

Recipe, inputs and results

class megaradrp.recipes.auxiliary.focusspec.FocusSpectrographRecipe(*args,
**kwargs)

Process spectrograph focus images and find best focus.

This recipe process a set of focus images obtained in Focus Spectrograph mode and returns dif-
ferent measurements of the spectrograph focus along de detector.

See also:

5.2. Auxiliary Modes 47

MEGARA Pipeline Documentation, Release 0.8.dev0

megaradrp.recipes.auxiliary.focustel.FocusTelescopeRecipe recipe to measure
the focus of the telescope

Notes

Images provided in obresult are grouped by the value of their FOCUS keyword. Groups of images
are trimmed and corrected from overscan, bad pixel mask (if master_bpm is not None), bias and
dark current (if master_dark is not None). Each group is then stacked using the median.

The result of the combination is saved as an intermediate result, named ‘focus2d-#focus.fits’, with
#focus being the value of the focus of each group. Apertures are extracted in each combined
image, and the resulting RSS file is saved as an intermediate result, named ‘focus1-#focus.fits’.

For each image, peaks are detected every nfibers fibers, and their position, peak flux and FWHM
is computed. The image with median focus is taken as reference image, and the peaks of every
other image are matched against it.

Then, for each line matched in the series of images, its FWHM is fitted to a 2nd degree polynomial,
and the focus corresponding to its minimum is obtained.

The recipe returns:

• focus_table: a table with (x,y,best_focus) for each matched peak, with x,y measured in the
reference bidimensional image

• focus_wavelength: a structure containing measurements of every matched peak in each
image

• focus_image: a bidimensional image representing the spatial variation of the best focus,
using a Voronoi diagram.

class FocusSpectrographRecipeInput(*args, **kwds)
FocusSpectrographRecipeInput documentation.

Attributes

extraction_offset [ListOfType, requirement, optional, default=[0.0]] Offset
traces for extraction

master_bias [MasterBias, requirement] Master BIAS image

master_bpm [MasterBPM, requirement, optional] Master Bad Pixel Mask

master_dark [MasterDark, requirement, optional] Master DARK image

master_traces [MultiType, requirement] Apertures information for extraction

master_wlcalib [WavelengthCalibration, requirement] Wavelength calibration
table

nfibers [int, requirement, optional, default=10] The results are sampled every
nfibers

obresult [ObservationResultType, requirement] Observation Result

tsigma [int, requirement, optional, default=50] Scale factor for row threshold

class FocusSpectrographRecipeResult(*args, **kwds)
FocusSpectrographRecipeResult documentation.

Attributes

focus_image [ProcessedFrame, product]

focus_table [ArrayType, product]

focus_wavelength [FocusWavelength, product]

qc [QualityControlProduct, product]

48 Chapter 5. Observing modes

MEGARA Pipeline Documentation, Release 0.8.dev0

5.2.3 Fine acquisition with the LCB IFU

Mode LCB Acquisition

Usage Online

Key MegaraLcbAcquisition

Recipe AcquireLCBRecipe

Recipe input RecipeInput

Recipe result RecipeResult

This mode sequence includes the required actions to acquire a target with known celestial coordinates
and place it at a reference position inside the LCB IFU instrument mode. The reference position for
each mode is defined as the center of the fibers (or its associated microlens) that is closest to the bundle
footprint geometrical center. In the case of the LCB the reference position will depend on the focal-
plane cover configuration. This mode is a refinement of acquisition performed by the telescope or A&G
systems.

Requirements

This mode requires having the focal-plane cover configured, the instrument shutter open, to configure
the VPH mechanism to select the grating to be used, to set the instrument mode to LCB, to move the
focusing mechanism to the position pre-defined for the specific VPH of choice, and to expose a certain
time and to readout the detector in a series of exposures, being this series the fine acquisition image set.

As part of the MEGARA on-line quick-look software the image (or images) obtained as part of this
observing mode should be processed and the spectra extracted so to determine the position of the
centroid of the target in the corresponding field of view. A view of the field should be also produced
in order to evaluate whether or not the angle of the Folded-Cass rotator matches that specified by the
observer.

Products

Fine acquisition image sets should be obtained at the beginning of the observing night by either the
observer or the staff of the observatory (TBD) or every time a problem with the telescope absolute
pointing is suspected. Such image sets should be also obtained when an absolute positioning precision
of the order of a fraction of the spaxel size is required, better than 0.62 arcsec in this case for the LCB.

The observatory staff should decide whether or not the corrections derived must be applied to the
acquisition of other targets during the same observing night or exclusively to the target currently being
observed.

Recipe, inputs and results

class megaradrp.recipes.auxiliary.acquisitionlcb.AcquireLCBRecipe(*args,
**kwargs)

Process Acquisition LCB images.

This recipe processes a set of acquisition images obtained in LCB Acquisition mode and returns
the offset and rotation required to center the fiducial object in its reference positions.

See also:

megaradrp.recipes.auxiliary.acquisitionmos.AcquireMOSRecipe

5.2. Auxiliary Modes 49

MEGARA Pipeline Documentation, Release 0.8.dev0

Notes

Images provided by obresult are trimmed and corrected from overscan, bad pixel mask (if mas-
ter_bpm is not None), bias, dark current (if master_dark is not None) and slit-flat (if master_slitflat is
not None).

Images thus corrected are the stacked using the median. The result of the combination is saved as
an intermediate result, named ‘reduced_image.fits’. This combined image is also returned in the
field reduced_image of the recipe result.

The apertures in the 2D image are extracted, using the information in master_traces and resampled
according to the wavelength calibration in master_wlcalib. Then is divided by the master_fiberflat.
The resulting RSS is saved as an intermediate result named ‘reduced_rss.fits’. This RSS is also
returned in the field reduced_rss of the recipe result.

The sky is subtracted by combining the the fibers marked as SKY in the fibers configuration. The
RSS with sky subtracted is returned ini the field final_rss of the recipe result.

Then, the centroid of the fiducial object nearest to the center of the field is computed. The offset
needed to center the fiducial object in the center of the LCB is returned.

class AcquireLCBRecipeInput(*args, **kwds)
AcquireLCBRecipeInput documentation.

Attributes

extraction_offset [ListOfType, requirement, optional, default=[0.0]] Offset
traces for extraction

extraction_region [ListOfType, requirement, optional, default=[1000, 3000]] Re-
gion used to compute a mean flux

ignored_sky_bundles [ListOfType, requirement, optional] Ignore these sky
bundles

master_bias [MasterBias, requirement] Master BIAS image

master_bpm [MasterBPM, requirement, optional] Master Bad Pixel Mask

master_dark [MasterDark, requirement, optional] Master DARK image

master_fiberflat [MasterFiberFlat, requirement] Master fiber flat calibration

master_sensitivity [MasterSensitivity, requirement, optional] Master sensitivity
for flux calibration

master_slitflat [MasterSlitFlat, requirement, optional] Master slit flat calibration

master_traces [MultiType, requirement] Apertures information for extraction

master_twilight [MasterTwilightFlat, requirement, optional] Master twlight flat
calibration

master_wlcalib [WavelengthCalibration, requirement] Wavelength calibration
table

obresult [ObservationResultType, requirement] Observation Result

points [ListOfType, requirement, optional, default=[(0, 0)]] Coordinates

reference_extinction [ReferenceExtinctionTable, requirement, optional] Refer-
ence extinction

relative_threshold [float, requirement, optional, default=0.3] Threshold for
peak detection

class AcquireLCBRecipeResult(*args, **kwds)
AcquireLCBRecipeResult documentation.

Attributes

50 Chapter 5. Observing modes

MEGARA Pipeline Documentation, Release 0.8.dev0

final_rss [ProcessedRSS, product]

offset [list, product]

qc [QualityControlProduct, product]

reduced_image [ProcessedFrame, product]

reduced_rss [ProcessedRSS, product]

rotang [float, product]

RecipeInput
alias of numina.core.metaclass.AcquireLCBRecipeInput

RecipeResult
alias of numina.core.metaclass.AcquireLCBRecipeResult

5.2.4 Fine acquisition with the Fiber MOS

Mode MOS Acquisition

Usage Online

Key MegaraLcbAcquisition

Recipe AcquireMOSRecipe

Recipe input RecipeInput

Recipe result RecipeResult

The sequence for this observing mode includes the required actions to acquire a list of targets with
known celestial coordinates and place each target at the center of a different robotic positioner. The
information on the assignment of targets and positioners is included in the form of a set of input cata-
logues generated off-line by the MEGARA Observing Preparation Software Suite (MOPSS). The refer-
ence position for each positioner is the center of the central fiber of the 7-fiber minibundle. This mode
is a refinement of the acquisition performed by the telescope or A&G systems.

Requirements

This mode requires having the focal-plane cover configured, the instrument shutter open, to configure
the VPH mechanism to select the grating to be used, to set the instrument mode to Fiber MOS, to move
the focusing mechanism to the position pre-defined for the specific VPH of choice, to move all robotic
positioners with a target associated in the input catalogues to the position of the corresponding target
and to expose a certain time and to readout the detector in a series of exposures, being this series the
Fiber-MOS fine acquisition image set.

As part of the MEGARA on-line quick-look software, the image (or images) obtained should be pro-
cessed and the spectra extracted so to determine the position of the centroid of a number of reference
targets included in the corresponding field of view and identified as such in the set of input catalogues
used for this observing mode. A minimum of three reference sources should be included in each Fiber
MOS configuration block in order for this observing mode to generate a solution. The quick-look soft-
ware should compare the expected and the actual positions of these reference sources in order to de-
termine the best-fitting set of offsets (both in X and Y) and rotation angle to apply to the telescope and
Folded-Cass rotator, respectively, to then continue with one of the scientific observing modes described
in next Section.

Products

Fine acquisition image sets should be obtained by the observer at the beginning of the observation
of each field with the Fiber MOS. The observatory staff should decide whether or not the corrections
derived (telescope offset and Folded-Cass rotator angle) must be applied to the acquisition of other

5.2. Auxiliary Modes 51

MEGARA Pipeline Documentation, Release 0.8.dev0

fields with the Fiber MOS during the same observing night or exclusively to the target currently being
observed.

Recipe, inputs and results

class megaradrp.recipes.auxiliary.acquisitionmos.AcquireMOSRecipe(*args,
**kwargs)

Process Acquisition MOS images.

This recipe processes a set of acquisition images obtained in MOS Acquisition mode and returns
the offset and rotation required to center the fiducial objects in their reference positions.

See also:

megaradrp.recipes.auxiliary.acquisitionlcb.AcquireLCBRecipe

numina.array.offrot22 Kabsch algorithm for offset and rotation

Notes

Images provided by obresult are trimmed and corrected from overscan, bad pixel mask (if mas-
ter_bpm is not None), bias, dark current (if master_dark is not None) and slit-flat (if master_slitflat is
not None).

Images thus corrected are the stacked using the median. The result of the combination is saved as
an intermediate result, named ‘reduced_image.fits’. This combined image is also returned in the
field reduced_image of the recipe result.

The apertures in the 2D image are extracted, using the information in master_traces and resampled
according to the wavelength calibration in master_wlcalib. Then is divided by the master_fiberflat.
The resulting RSS is saved as an intermediate result named ‘reduced_rss.fits’. This RSS is also
returned in the field reduced_rss of the recipe result.

The sky is subtracted by combining the the fibers marked as SKY in the fibers configuration. The
RSS with sky subtracted is returned ini the field final_rss of the recipe result.

Then, the centroid of each fiducial object, marked as REFERENCE in the fibers configuration, is
computed. The offset and rotation needed to center each fiducial object in its bundle is computed
and returned

class AcquireMOSRecipeInput(*args, **kwds)
AcquireMOSRecipeInput documentation.

Attributes

extraction_offset [ListOfType, requirement, optional, default=[0.0]] Offset
traces for extraction

extraction_region [ListOfType, requirement, optional, default=[1000, 3000]] Re-
gion used to compute a mean flux

ignored_sky_bundles [ListOfType, requirement, optional] Ignore these sky
bundles

master_bias [MasterBias, requirement] Master BIAS image

master_bpm [MasterBPM, requirement, optional] Master Bad Pixel Mask

master_dark [MasterDark, requirement, optional] Master DARK image

master_fiberflat [MasterFiberFlat, requirement] Master fiber flat calibration

master_sensitivity [MasterSensitivity, requirement, optional] Master sensitivity
for flux calibration

22 https://numina.readthedocs.io/en/latest/reference/array.html#module-numina.array.offrot

52 Chapter 5. Observing modes

https://numina.readthedocs.io/en/latest/reference/array.html#module-numina.array.offrot

MEGARA Pipeline Documentation, Release 0.8.dev0

master_slitflat [MasterSlitFlat, requirement, optional] Master slit flat calibration

master_traces [MultiType, requirement] Apertures information for extraction

master_twilight [MasterTwilightFlat, requirement, optional] Master twlight flat
calibration

master_wlcalib [WavelengthCalibration, requirement] Wavelength calibration
table

obresult [ObservationResultType, requirement] Observation Result

reference_extinction [ReferenceExtinctionTable, requirement, optional] Refer-
ence extinction

relative_threshold [float, requirement, optional, default=0.3] Threshold for
peak detection

class AcquireMOSRecipeResult(*args, **kwds)
AcquireMOSRecipeResult documentation.

Attributes

final_rss [ProcessedRSS, product]

offset [list, product]

qc [QualityControlProduct, product]

reduced_image [ProcessedFrame, product]

reduced_rss [ProcessedRSS, product]

rotang [float, product]

RecipeInput
alias of numina.core.metaclass.AcquireMOSRecipeInput

RecipeResult
alias of numina.core.metaclass.AcquireMOSRecipeResult

5.3 Scientific Modes

The observing modes described in this section are those intended for the acquisition of scientific data
by the observer. Here we describe all possible scientific observations to be carried out either with one
of the MEGARA IFUs or the Fiber MOS.

5.3.1 LCB IFU scientific observation

Mode LCB IFU scientific observation

Usage Online, Offline

Key MegaraLcbImage

Recipe LCBImageRecipe

Recipe input LCBImageRecipeInput

Recipe result LCBImageRecipeResult

This mode sequence includes the required actions to obtain scientifically-valid data with the LCB IFU
instrument mode of MEGARA.

5.3. Scientific Modes 53

MEGARA Pipeline Documentation, Release 0.8.dev0

Requirements

This mode requires having the focal-plane cover configured, the instrument shutter open, to configure
the VPH mechanism to select the grating to be used, to set the instrument mode to LCB IFU, to move the
focusing mechanism to the position pre-defined for the specific VPH of choice, and to expose a certain
time and to readout the detector in a series of exposures, being this series the LCB IFU image set.

A pre-requisite for this observing mode is to have previously executed a “Fine acquisition with the LCB
IFU” auxiliary observing mode (TBC depending on the system absolute positioning precision and the
observer requirements).

As part of the MEGARA on-line quick-look software the images to be obtained by this observing mode
should be processed and the spectra extracted so to produce a view of the field at a selectable wave-
length within the wavelength range covered by the VPH of choice. As a number of Fiber MOS position-
ers are devoted to the measure of the sky background simultaneously with the LCB IFU observations
the on-line quick-look software should be able to subtract the spectrum of the sky from the spectra in
each IFU spaxel and from the maps generated above. This software should have information on the
specific focal-plane cover configuration being used.

In the case of observing relatively extended targets (comparable in size or larger than the LCB IFU field
of view) but a mapping observing mode is not required to be used a blank-sky image set should be
obtained using the same instrumental configuration as for the science target.

Products

The observer will obtain LCB IFU image sets as part of the routine scientific operation of the instrument.
The observatory staff could also make use of this observing mode to verify the status of the instrument
using any source different from a standard star. In the case of observing a standard star the calibration
mode standard star with the LCB IFU could be used instead.

Recipe, inputs and results

class megaradrp.recipes.scientific.lcb.LCBImageRecipe(*args, **kwargs)
Process LCB images.

This recipe processes a set of images obtained in LCB image mode and returns the sky subtracted
RSS.

See also:

megaradrp.recipes.scientific.mos.MOSImageRecipe

Notes

Images provided by obresult are trimmed and corrected from overscan, bad pixel mask (if mas-
ter_bpm is not None), bias, dark current (if master_dark is not None) and slit-flat (if master_slitflat is
not None).

Images thus corrected are the stacked using the median. The result of the combination is saved as
an intermediate result, named ‘reduced_image.fits’. This combined image is also returned in the
field reduced_image of the recipe result.

The apertures in the 2D image are extracted, using the information in master_traces and resampled
according to the wavelength calibration in master_wlcalib. Then is divided by the master_fiberflat.
The resulting RSS is saved as an intermediate result named ‘reduced_rss.fits’. This RSS is also
returned in the field reduced_rss of the recipe result.

The sky is subtracted by combining the the fibers marked as SKY in the fibers configuration. The
RSS with sky subtracted is returned in the field final_rss of the recipe result.

54 Chapter 5. Observing modes

MEGARA Pipeline Documentation, Release 0.8.dev0

If a master_sensitivity is provided (optional), RSS products will be flux calibrated. If refer-
ence_extinction is provided (optional), final_rss and reduced_rss will be extinction corrected. Notice
that sky_rss is not corrected from extinction.

class ImageRecipeInput(*args, **kwds)
ImageRecipeInput documentation.

Attributes

extraction_offset [ListOfType, requirement, optional, default=[0.0]] Offset
traces for extraction

ignored_sky_bundles [ListOfType, requirement, optional] Ignore these sky
bundles

master_bias [MasterBias, requirement] Master BIAS image

master_bpm [MasterBPM, requirement, optional] Master Bad Pixel Mask

master_dark [MasterDark, requirement, optional] Master DARK image

master_fiberflat [MasterFiberFlat, requirement] Master fiber flat calibration

master_sensitivity [MasterSensitivity, requirement, optional] Master sensitivity
for flux calibration

master_slitflat [MasterSlitFlat, requirement, optional] Master slit flat calibration

master_traces [MultiType, requirement] Apertures information for extraction

master_twilight [MasterTwilightFlat, requirement, optional] Master twlight flat
calibration

master_wlcalib [WavelengthCalibration, requirement] Wavelength calibration
table

obresult [ObservationResultType, requirement] Observation Result

reference_extinction [ReferenceExtinctionTable, requirement, optional] Refer-
ence extinction

relative_threshold [float, requirement, optional, default=0.3] Threshold for
peak detection

class LCBImageRecipeResult(*args, **kwds)
LCBImageRecipeResult documentation.

Attributes

final_rss [ProcessedRSS, product]

qc [QualityControlProduct, product]

reduced_image [ProcessedFrame, product]

reduced_rss [ProcessedRSS, product]

sky_rss [ProcessedRSS, product]

RecipeInput
alias of numina.core.metaclass.ImageRecipeInput

RecipeResult
alias of numina.core.metaclass.LCBImageRecipeResult

5.3.2 Fiber MOS scientific observation

Mode Fiber MOS scientific observation

Usage Online, Offline

5.3. Scientific Modes 55

MEGARA Pipeline Documentation, Release 0.8.dev0

Key MegaraMosImage

Recipe MOSImageRecipe

Recipe input MOSImageRecipeInput

Recipe result MOSImageRecipeResult

This mode sequence includes the required actions to observe a list of targets with known celestial co-
ordinates with MEGARA using the Fiber MOS instrument mode. The information on the assignment
of targets and positioners is included in the form of a set of input catalogues generated off-line by the
MEGARA Observing Preparation Software Suite (MOPSS). The reference position for each positioner is
the center of the central fiber of the 7-fiber minibundle. This observing mode could be run with one of
the sides of the focal-plane cover closed in order to reduce the cross-talk between positioners that would
be placed adjacent in the pseudo-slit. Thus, the input catalogues should be specific of the focal-plane
cover configuration to be used and both the on-line quick-look software and the off-line pipeline should
include that information as a parameter or set of parameters. Note that the Fiber MOS catalogues and
configuration files could be designed for their use under any focal-plane cover configuration. Even in
that case the data processing software should know under which configuration a given image set was
obtained.

Requirements

This observing mode requires having the focal-plane cover configured, the instrument shutter open, to
configure the VPH mechanism to select the grating to be used, to set the instrument mode to Fiber MOS,
to move the focusing mechanism to the position pre-defined for the specific VPH of choice, to move all
robotic positioners with a target associated in the input catalogues to the position of the correspond-
ing target (these include science targets, reference stars for fine acquisition and positioners devoted to
blank-sky measurements) and to expose a certain time and to readout the detector in a series of expo-
sures, being this series the Fiber MOS image set.

A pre-requisite for running this observing mode is to have previously executed a “Fine acquisition with
the Fiber MOS” auxiliary observing mode on the same field.

As part of the MEGARA on-line quick-look software, the image (or images) obtained should be pro-
cessed and the spectra extracted. The observer might define a number of positioners to be placed on
blank-sky regions of the field in order to improve sky subtraction. Alternatively, the user can also define
a blank sky position. This is particularly important when observing individual stars in a nearby (Local
Group) galaxy, for example, where the emission from the host galaxy is expected to contaminate even
the outermost positioners. Should that be the case, the on-line quick-look software should be able to
derive a sky spectrum from the blank-sky observation (if present) or the spectra of these positioners
(if defined and no blank-sky observation is available) and subtract it from the spectra of the targets.
The processed spectra should then be visualized using the on-line quick-look software. If neither a
blank-sky observation nor blank-sky positioners are available no sky subtraction will be performed.

Products

The observer will obtain Fiber MOS image sets as part of the routine scientific operation of the instru-
ment. The observatory staff could also make use of this observing mode to verify the status of the
instrument.

Recipe, inputs and results

class megaradrp.recipes.scientific.mos.MOSImageRecipe(*args, **kwargs)
Process MOS images.

This recipe processes a set of images obtained in MOS image mode and returns the sky subtracted
RSS.

See also:

56 Chapter 5. Observing modes

MEGARA Pipeline Documentation, Release 0.8.dev0

megaradrp.recipes.scientific.lcb.LCBImageRecipe

Notes

Images provided by obresult are trimmed and corrected from overscan, bad pixel mask (if mas-
ter_bpm is not None), bias, dark current (if master_dark is not None) and slit-flat (if master_slitflat is
not None).

Images thus corrected are the stacked using the median. The result of the combination is saved as
an intermediate result, named ‘reduced_image.fits’. This combined image is also returned in the
field reduced_image of the recipe result.

The apertures in the 2D image are extracted, using the information in master_traces and resampled
according to the wavelength calibration in master_wlcalib. Then is divided by the master_fiberflat.
The resulting RSS is saved as an intermediate result named ‘reduced_rss.fits’. This RSS is also
returned in the field reduced_rss of the recipe result.

The sky is subtracted by combining the the fibers marked as SKY in the fibers configuration. The
RSS with sky subtracted is returned in the field final_rss of the recipe result.

If a master_sensitivity is provided (optional), RSS products will be flux calibrated. If refer-
ence_extinction is provided (optional), final_rss and reduced_rss will be extinction corrected. Notice
that sky_rss is not corrected from extinction.

class ImageRecipeInput(*args, **kwds)
ImageRecipeInput documentation.

Attributes

extraction_offset [ListOfType, requirement, optional, default=[0.0]] Offset
traces for extraction

ignored_sky_bundles [ListOfType, requirement, optional] Ignore these sky
bundles

master_bias [MasterBias, requirement] Master BIAS image

master_bpm [MasterBPM, requirement, optional] Master Bad Pixel Mask

master_dark [MasterDark, requirement, optional] Master DARK image

master_fiberflat [MasterFiberFlat, requirement] Master fiber flat calibration

master_sensitivity [MasterSensitivity, requirement, optional] Master sensitivity
for flux calibration

master_slitflat [MasterSlitFlat, requirement, optional] Master slit flat calibration

master_traces [MultiType, requirement] Apertures information for extraction

master_twilight [MasterTwilightFlat, requirement, optional] Master twlight flat
calibration

master_wlcalib [WavelengthCalibration, requirement] Wavelength calibration
table

obresult [ObservationResultType, requirement] Observation Result

reference_extinction [ReferenceExtinctionTable, requirement, optional] Refer-
ence extinction

relative_threshold [float, requirement, optional, default=0.3] Threshold for
peak detection

class MOSImageRecipeResult(*args, **kwds)
MOSImageRecipeResult documentation.

Attributes

5.3. Scientific Modes 57

MEGARA Pipeline Documentation, Release 0.8.dev0

final_rss [ProcessedRSS, product]

qc [QualityControlProduct, product]

reduced_image [ProcessedFrame, product]

reduced_rss [ProcessedRSS, product]

sky_rss [ProcessedRSS, product]

RecipeInput
alias of numina.core.metaclass.ImageRecipeInput

RecipeResult
alias of numina.core.metaclass.MOSImageRecipeResult

5.4 Combined Modes

The observing modes described in this section are those that require the outputs of previous observing
blocks.

5.4.1 Compute Sensitivity from Std Stars

Mode

Usage Offline

Key MegaraSensitivityStar

Product MasterSensitivity

Recipe Recipe

Recipe input RecipeInput

Recipe result RecipeResult

Recipe, inputs and results

class megaradrp.recipes.combined.sensstar.Recipe(*args, **kwargs)
Process Sensitivity Star Recipe.

This recipe processes a set of images processed by the recipes of Standard star with the FIBER
MOS or Standard star with the LCB IFU and returns the sensitivity correction required for flux
calibration.

See also:

megaradrp.recipes.combined.extinctionstar.Recipe

class RecipeInput(*args, **kwds)
RecipeInput documentation.

Attributes

master_extinction [ReferenceExtinctionTable, requirement] Atmospheric ex-
tinction

obresult [ObservationResultType, requirement] Observation Result

reference_spectra [ListOfType, requirement] Reference spectra of Std stars

class RecipeResult(*args, **kwds)
RecipeResult documentation.

Attributes

58 Chapter 5. Observing modes

MEGARA Pipeline Documentation, Release 0.8.dev0

master_sensitivity [MasterSensitivity, product]

qc [QualityControlProduct, product]

5.4.2 Compute Extinction and Sensitivity from Std Stars

Mode Compute Extinction from Std Stars

Usage Offline

Key MegaraExtinctionStar

Product MasterSensitivity , Extinction

Recipe Recipe

Recipe input RecipeInput

Recipe result RecipeResult

Recipe, inputs and results

class megaradrp.recipes.combined.extinctionstar.Recipe(*args, **kwargs)
Process Sensitivity Star Recipe.

This recipe processes a set of images processed by the recipes of Standard star with the FIBER
MOS or Standard star with the LCB IFU and returns the sensitivity correction and the atmo-
spheric extinction required for flux calibration.

See also:

megaradrp.recipes.combined.sensstar.Recipe

class RecipeInput(*args, **kwds)
RecipeInput documentation.

Attributes

obresult [ObservationResultType, requirement] Observation Result

reference_spectra [ListOfType, requirement] Reference spectra of Std stars

class RecipeResult(*args, **kwds)
RecipeResult documentation.

Attributes

master_extinction [ReferenceExtinctionTable, product] Atmospheric extinction

master_sensitivity [MasterSensitivity, product]

qc [QualityControlProduct, product]

5.4. Combined Modes 59

MEGARA Pipeline Documentation, Release 0.8.dev0

60 Chapter 5. Observing modes

CHAPTER 6

Data Products

Each recipe of the MEGARA Pipeline produces a set of predefined results, known as data products. In
turn, the recipes may request different data products as computing requirements, effectively chaining
the recipes.

For example, the requirements of FiberFlatRecipe include a MasterDark object. This object is
produced by the recipe DarkRecipe, which in turn requires a MasterBias object.

6.1 FITS Keywords

The FITS keywords used by MEGARA are described in full detail elsewhere (document
TEC/MEG/146).

In the following sections, we describe the keywords that are used by the pipeline.

6.1.1 Primary header

Type Keyword Example Explanation
L SIMPLE T Standard FITS format
I BITPIX 16 One of -64,-32,8,16,32
I NAXIS 2 # of axes in frame
I NAXIS1 2048 # of pixels per row
I NAXIS2 2048 # of rows
S ORIGIN ‘GTC’ FITS originator
S OBSERVAT ‘ORM’ Observatory
S TELESCOP ‘GTC’ The telescope
S INSTRUME ‘MEGARA’ The instrument
S OBJECT ‘NGC 4594’ Target designation
S OBSERVER ‘OBSERVER’ Who adquired the data
S DATE-OBS ‘2012-09-20T12:00:11.50’ Date of the start of the observation
S DATE ‘2012-09-20T12:14:12.78’ Date the file was written

61

MEGARA Pipeline Documentation, Release 0.8.dev0

6.1.2 Required by the pipeline

Type Keyword Example Explanation
R AIRMASS 1.1908 Mean airmass of the observation
R MJD-OBS 72343.34324 Modified JD of the start of the observation
S IMAGETYP ‘FLAT’ Type of the image
S VPH ‘LR-R’ Type of VPH
S OBSTYPE ‘SLITFLAT’ Type of observation
R EXPOSED Exposure time in seconds
R EXPTIME Exposure time in seconds (synonim)
R DARKTIME TBD
S OBSMODE ‘SLITFLAT Identifier of the observing mode

6.1.3 FIBERS extension

The state of the focal plane of MEGARA is stored in a dedicated extension names FIBERS. This extension
contains only headers, the data part will be empty.

Type Keyword Example Explanation
I NFIBERS 643 Number of fibers
I NSPAXEL 644 Number of spaxels
I NBUN-

DLES
92 Number of fiber bundles

S INSMODE LCB Name of active pseudo slit
S CONFID ‘b7d35e7df0274fde..’ Unique identificator of the configuration
I BUNnnn_P 0 Priority of the target in this bundle
S BUNnnn_I ‘unknown ‘ Name of the target
S BUNnnn_T ‘UNASSIGNED’ Type of target (‘STAR’, ‘SKY’, ‘TARGET’, ‘UNAS-

SIGNED’
I FIBmmm_B nnn ID of the bundle
F FIB-

mmm_D
+3.34565 Declination of the spaxel

F FIB-
mmm_R

12.342223 Right Ascension of the spaxel

F FIB-
mmm_O

0.0 Position Angle of the Fiber

L FIB-
mmm_A

T Is fiber active?

F FIB-
mmm_X

-
0.4646226291303512

X position of the fiber in the focal plane

F FIB-
mmm_Y

63.63025 Y position of the fiber in the focal plane

6.2 Data products

These data products are saved to disk as FITS files. MEGARA DRP makes use of the FITS headers to
record information about the data processing. This information may be recorded using other methods
as well, such as the GTC Database.

The following headers are included in all image data products and record information about the version
of Numina and the name and version of the recipe used.

62 Chapter 6. Data Products

MEGARA Pipeline Documentation, Release 0.8.dev0

NUMXVER = '0.13.0 ' / Numina package version
NUMRNAM = 'BiasRecipe' / Numina recipe name
NUMRVER = '0.1.0 ' / Numina recipe version
NUMTYP = 'TARGET ' / Data product type

HISTORY keywords may be used also, but the information in these keyword may not be easily indexed.

6.2.1 Generic types

Processed Frame

Processed Frame is the type of any image produced by the pipeline that represents a view of the detector.
Its size may be 4096x4112 for trimmed images or 4196x4212 for unprocessed, raw images.

Processed Frame is represented by ProcessedFrame.

Processed RSS

Processed Row Stacked Spectra is the type of any image produced by the pipeline that represents a
view of the focal plane, using extracted fibers. It will have 623 rows in LCB mode and 644 rows in MOS
mode, each row representing the extracted spectrum of one fiber. The number of columns will be 4112
or larger, depending on the stage of the reduction.

Procesed RSS images will tipically have a FIBERS extension.

Processed RSS is represented by ProcessedRSS.

Processed Spectrum

Processed spectrum is the type of any image produced by the pipeline that represents the spectrum of
one object. Its data content will be a 1D array.

Processed Spectrum is represented by ProcessedSpectrum.

6.2.2 Calibrations

Master Bias frames

Bias frames are produced by the recipe BiasRecipe. Each bias frame is a multiextension FITS file with
the following extensions.

Extension name Type Ver-
sion

Contents

PRIMARY Pri-
mary

The bias level

VARIANCE Image Variance of the bias level
MAP Image Number of pixels used to compute the bias level

Master bias frames are represented by MasterBias.

6.2. Data products 63

MEGARA Pipeline Documentation, Release 0.8.dev0

Master Dark frames

Master dark frames are produced by the recipe DarkRecipe. Each dark frame is a multiextension FITS
file with the following extensions.

Extension name Type Ver-
sion

Contents

PRIMARY Pri-
mary

The dark level

VARIANCE Image Variance of the dark level
MAP Image Number of pixels used to compute the dark level

Master dark frames are represented by MasterDark.

Master Bad Pixel Mask

Master Bad Pixel Mask is produced by the recipe BadPixelsMaskRecipe. Each bad pixel mask frame
is a multiextension FITS file with the following extensions.

Extension name Type Version Contents
PRIMARY Primary The Bad Pixel Mask level

Master bad pixel mask frames are represented by MasterBPM .

Master Slit Flat

Master Slit Flat is produced by the recipe SlitFlatRecipe. Each slit flat frame is a multiextension
FITS file with the following extensions.

Extension name Type Contents
PRIMARY Primary The Slit Flat level

Masterslit flat frames are represented by MasterSlitFlat.

Master Traces

Master Fiber Flat is produced by the recipe TraceMapRecipe. The result is a JSON23 file where each
one of the records belongs to a given fiber in the RSS file. Moreover, each one of the records has the next
information:

Field Type Contents
boxid Integer Number of the box
fibid Integer Number of the fiber
fitparms Primary Polyfit algorithm result
start Integer X-Coordenate in the Flat image
stop Integer X-Coordenate in the Flat image

In the following, a real example of the fourth fiber which is in the first box can be seen in the yaml
format:

23 http://www.json.org/

64 Chapter 6. Data Products

http://www.json.org/

MEGARA Pipeline Documentation, Release 0.8.dev0

- boxid: 1
fibid: 4
fitparms: [2.6909627476636523e-18, -3.0949058966515047e-14, 1.872326137294402e-

→˓10,1.1602592442769502e-06, -0.0009443161994027746, 262.01840282676613]
start: 4
stop: 3594

Master Tracemap files are represented by TraceMap.

Master Wavelength Calibration

Master wavelength calibration is produced by the recipe ArcCalibrationRecipe. The result is a
JSON24 file where each one of the records belongs to a given fiber in the RSS file. Moreover, each one of
the records or apertures has the next fields:

Field Type Contents
features List List with the arc’s information
function Dictionary Number of pixels used to compute the dark level
id Integer Number the corresponding fiber

Additionally, each one of the elements that belongs to the features corresponds to each one of the
arc lines that has been found in the RSS image. The dictionary that each element has, contains the next
information:

Field Type Contents
category String Type of the arc
flux Float Flux of the arc
fwhm Float Full Width at Half Maximum of the arc
reference Float Line in the Catalog lines
wavelength Float Predicted line
xpos Float X-coordenate of the arc in the RSS image
ypos Float Y-coordenate of the arc in the RSS image

Finally, the function dictionary has three elements: coefficients, method and order fields. Co-
efficients has the result of executing the polynomial.polyfit numpy method. Method field has the
name of the algorithm used. Order field has the polynomial degree.

In the following, an example of the first fiber of a real JSON file with only two arc lines can be seen:

{
"aperture": {
"features": [

{
"category": "E",
"flux": 50212.563405324945,
"fwhm": 3.438967092459162,
"reference": 6013.2816999999995,
"wavelength": 6013.2847301957181,
"xpos": 33.267395825699928,
"ypos": 251.10097403866305

},
],
"function": {

"coefficients": [6001.573165443434,0.35298729563735487,-2.898410563853586e-
→˓05,1.858317850662985e-08,-8.411429549924489e-12,1.4341696725726076e-15],

"method": "least squares",

(continues on next page)

24 http://www.json.org/

6.2. Data products 65

http://www.json.org/

MEGARA Pipeline Documentation, Release 0.8.dev0

(continued from previous page)

"order": 5
},
"id": 2

}

Master Wavelength calibration file is represented by WavelengthCalibration.

Master Fiber Flat

Master Fiber Flat is produced by the recipe FiberFlatRecipe. Each master fiber flat frame is a mul-
tiextension FITS file with the following extensions.

Extension name Type Version Contents
PRIMARY Primary The Fiber Flat level
FIBERS Image Description of the focal plane

Master fiber flats frames are represented by MasterFiberFlat.

Master Twilight Flat

Master Twilight Flat is produced by the recipe TwilightFiberFlatRecipe. Each twilight flat frame
is a multiextension FITS file with the following extensions.

Extension name Type Version Contents
PRIMARY Primary The Twilight Flat level
FIBERS Image Description of the focal plane

Master twilight flat frames are represented by MasterTwilightFlat.

Master Sensitivity

Master sensitivity star image is produced by the recipe Recipe.

Extension name Type Version Contents
PRIMARY Primary The Sensitivity Star Image level

Master sensitivity star image is represented by MasterSensitivity .

Master Extinction

Master extinction star image is produced by the recipe Recipe.

Extension name Type Version Contents
PRIMARY Primary The Extinction Star Image level

Master extinction star image is represented by Extinction.

6.2.3 Reference calibrations

The following types represent types used for calibration, but that are not the result of any recipe. Ex-
amples of this type are the spectra of flux standars or the tables of spectral lines of calibration lamps.

66 Chapter 6. Data Products

MEGARA Pipeline Documentation, Release 0.8.dev0

Reference Spectrum

A tabular representation of the spectral energy distribution of a standard star. The first column contains
wavelength (in Angstroms) and the second column the flux in erg/s/cm^2/Angstrom

Reference spectrum is represented by ReferenceSpectrum.

6.2. Data products 67

MEGARA Pipeline Documentation, Release 0.8.dev0

68 Chapter 6. Data Products

CHAPTER 7

Reduction Recipes

7.1 Execution environment of the Recipes

Recipes have different execution environments. Some recipes are designed to process observing modes
required while observing at the telescope. These modes are related to visualization, acquisition and
focusing. The corresponding Recipes are integrated in the GTC environment. We call these recipes the
Data Factory Pipeline, (DFP).

Other group of recipes are devoted to scientific observing modes and auxiliary calibrations. These
Recipes constitute the Data Reduction Pipeline, (DRP). The software is meant to be standalone, users
shall download the software and run it in their own computers, with reduction parameters and calibra-
tions provided by the instrument team.

Users of the DRP may use the simple Numina CLI (Command Line Interface). Users of the DFP shall
interact with the software through the GTC Inspector.

7.2 Recipe Parameters

MEGARA Recipes based on Numina have a list of required parameters needed to configure the Recipe
properly. The Recipe announces the required parameters with the following syntax (the syntax is subject
to changes).

class SomeRecipeInput(RecipeInput):
master_dark = DataProductParameter(MasterDark, 'Master dark image')
some_numeric_value = Parameter(0.45, 'Some numeric value'),

@define_input(SomeRecipeInput)
class SomeRecipe(RecipeBase):

...

When the Recipe is configured properly, it is executed with an observing block data structure as input.
When is run using Numina CLI, this data structure is created from an user-provided text file. The recipe
requirements values are either provided in a text file or have default values.

69

MEGARA Pipeline Documentation, Release 0.8.dev0

7.3 Recipe Products

Recipes based on Numina provide a list of products created by the recipe. The Recipe announces the
required parameters with the following syntax (the syntax is subject to changes).

class SomeRecipeInput(RecipeInput):
master_dark = DataProductParameter(MasterDark, 'Master dark image')
some_numeric_value = Parameter(0.45, 'Some numeric value'),

class SomeRecipeResult(RecipeResult):
master_flat = Product(MasterDark)

@define_input(SomeRecipeInput)
@define_result(SomeRecipeResult)
class SomeRecipe(RecipeBase):

...

The data products of the MEGARA DRP are describe in Data Products

70 Chapter 7. Reduction Recipes

CHAPTER 8

Reference

Release 0.8

Date Dec 05, 2018

Warning: This “Reference” is still a work in progress; some of the material is not organized, and
several aspects of MEGARA DRP are not yet covered sufficient detail.

8.1 megaradrp.core — Base classes for processing

class megaradrp.core.recipe.MegaraBaseRecipe(*args, **kwargs)
Base clase for all MEGARA Recipes

Parameters

intermediate_results [bool, optional] If True, save intermediate results of the
Recipe

Attributes

obresult [ObservationResult, requirement]

qc [QualityControl, result, QC.GOOD by default]

logger : recipe logger

datamodel [MegaraDataModel]

class MegaraBaseRecipeInput(*args, **kwds)
MegaraBaseRecipeInput documentation.

Attributes

obresult [ObservationResultType, requirement] Observation Result

attrs()

obresult
The Recipe requires the result of an observation.

classmethod stored()

71

MEGARA Pipeline Documentation, Release 0.8.dev0

validate()
Validate myself.

class MegaraBaseRecipeResult(*args, **kwds)
MegaraBaseRecipeResult documentation.

Attributes

qc [QualityControlProduct, product]

attrs()

qc
Product holder for RecipeResult.

Deprecated since version 0.16: Product is replaced by Result. It will be removed in 1.0

store_to(where)

classmethod stored()

validate()
Validate myself.

RecipeInput
alias of numina.core.metaclass.MegaraBaseRecipeInput

RecipeResult
alias of numina.core.metaclass.MegaraBaseRecipeResult

build_recipe_input(ob, dal)
Build a RecipeInput object.

configure(**kwds)

static create_default_runinfo()

classmethod create_input(*args, **kwds)
Pass the result arguments to the RecipeInput constructor

classmethod create_result(*args, **kwds)
Pass the result arguments to the RecipeResult constructor

datamodel = <megaradrp.datamodel.MegaraDataModel object>

gather_info(recipeinput)

get_filters()

init_filters(rinput, ins)

init_filters_generic(rinput, getters, ins)

logger = <logging.Logger object>

obsres_extractor(obsres, tag_keys)

classmethod products()

classmethod requirements()

run(recipe_input)

run_qc(recipe_input, recipe_result)
Run Quality Control checks.

save_intermediate_array(array, name)
Save intermediate array object as FITS.

save_intermediate_img(img, name)
Save intermediate FITS objects.

save_structured_as_json(structured, name)

72 Chapter 8. Reference

MEGARA Pipeline Documentation, Release 0.8.dev0

set_base_headers(hdr)
Set metadata in FITS headers.

types_getter()

validate_input(recipe_input)
Method to customize recipe input validation.

See also:

numina.core.validator.validate25

validate_result(recipe_result)
Validate the result of the recipe

8.2 megaradrp.instrument — Static configuration

class megaradrp.instrument.loader.Loader
Instrument configuration loader for MEGARA

8.3 megaradrp.processing — Processing functions

8.4 megaradrp.processing.wavecalibration —

Corrector for wavecalibration

class megaradrp.processing.wavecalibration.WavelengthCalibrator(solutionwl,
data-
model=None,
dtype=’float32’)

A Node that applies wavelength calibration.

map_borders(wls)
Compute borders of pixels for interpolation.

The border of the pixel is assumed to be midway of the wls

8.5 megaradrp.products — Data products of the MEGARA
pipeline

class megaradrp.types.MegaraFrame(*args, **kwds)
A processed frame

class megaradrp.types.ProcessedFrame(*args, **kwds)
A processed frame

class megaradrp.types.ProcessedImage(*args, **kwds)
A processed image

class megaradrp.types.ProcessedRSS(*args, **kwds)
A processed RSS image

class megaradrp.types.ProcessedMultiRSS(*args, **kwds)
A processed RSS image not to be stored

class megaradrp.types.ProcessedSpectrum(*args, **kwds)
A 1d spectrum

25 https://numina.readthedocs.io/en/latest/reference/core.html#numina.core.validator.validate

8.2. megaradrp.instrument — Static configuration 73

https://numina.readthedocs.io/en/latest/reference/core.html#numina.core.validator.validate

MEGARA Pipeline Documentation, Release 0.8.dev0

class megaradrp.types.ProcessedImageProduct(*args, **kwargs)

class megaradrp.types.ProcessedRSSProduct(*args, **kwargs)

class megaradrp.types.ProcessedSpectrumProduct(*args, **kwargs)

class megaradrp.types.MasterBPM(*args, **kwargs)
Bad Pixel Mask product

class megaradrp.types.MasterBias(*args, **kwargs)
A Master Bias image

class megaradrp.types.MasterDark(*args, **kwargs)
A Master Dark image

class megaradrp.types.MasterSlitFlat(*args, **kwargs)

class megaradrp.types.MasterFiberFlat(*args, **kwargs)

class megaradrp.types.MasterTwilightFlat(*args, **kwargs)

class megaradrp.products.structured.BaseStructuredCalibration(instrument=’unknown’)

class megaradrp.products.tracemap.TraceMap(instrument=’unknown’)
Trace map calibration product

class megaradrp.products.modelmap.ModelMap(instrument=’unknown’)

class megaradrp.products.wavecalibration.WavelengthCalibration(instrument=’unknown’)
Wavelength Calibration Product

class megaradrp.types.MasterSensitivity(*args, **kwargs)
Sensitivity correction.

class megaradrp.types.ReferenceExtinctionTable(*args, **kwargs)
Atmospheric Extinction.

class megaradrp.types.ReferenceSpectrumTable(*args, **kwargs)
The spectrum of a reference star

8.6 megaradrp.recipes — Reduction Recipes for MEGARA

8.7 megaradrp.types — MEGARA data types

8.8 megaradrp.datamodel — MEGARA datamodel

Data model for MEGARA

class megaradrp.datamodel.BundleConf
Description of a bundle

class megaradrp.datamodel.FiberConf
Description of the fiber

class megaradrp.datamodel.FibersConf
Global configuration of the fibers

active_fibers()

bundles_to_table()
Convert bundles to a Table

conected_fibers(valid_only=False)

fibers_to_table()
Convert fibers to a Table

74 Chapter 8. Reference

MEGARA Pipeline Documentation, Release 0.8.dev0

inactive_fibers()

invalid_fibers()

sky_fibers(valid_only=False, ignored_bundles=None)

spectral_coverage()

valid_fibers()

class megaradrp.datamodel.MegaraDataModel
Data model of MEGARA images

PLATESCALE = 1.12

db_info_keys = ['instrument', 'object', 'observation_date', 'uuid', 'type', 'mode', 'exptime', 'darktime', 'insconf', 'blckuuid', 'quality_control', 'vph', 'insmode']

db_info_keys_extra = ['vph', 'insmode']

fiber_scale_unit(img, unit=False)

gather_info_oresult(val)

get_fiberconf(img)
Obtain FiberConf from image

get_fiberconf_default(insmode)
Obtain default FiberConf object

get_imgid(img)
Obtain a unique identifier of the image.

Parameters

img [astropy.io.fits.HDUList]

Returns

str: Identification of the image

meta_dinfo_headers = ['exptime', 'observation_date', 'vph', 'vphpos', 'insmode', 'focus', 'osfilter', 'uuid', 'temp', 'block_uuid', 'insconf_uuid', 'speclamp', 'imgid']

meta_info_headers = ['instrument', 'object', 'observation_date', 'uuid', 'type', 'mode', 'exptime', 'darktime', 'insconf', 'blckuuid', 'quality_control', 'vph', 'insmode']

query_attrs = {'insconf': <megaradrp.datamodel.QueryAttribute object at 0x7f409b69f7f0>, 'insmode': <megaradrp.datamodel.QueryAttribute object at 0x7f409b69f390>, 'speclamp': <megaradrp.datamodel.QueryAttribute object at 0x7f409bb14780>, 'vph': <megaradrp.datamodel.QueryAttribute object at 0x7f407eb5b2b0>}

class megaradrp.datamodel.QueryAttribute(name, tipo, description=”)

class megaradrp.datamodel.TargetType
Possible targest in a fiber bundle

BLANK = 4

REFERENCE = 5

SKY = 4

SOURCE = 1

STAR = 5

UNASSIGNED = 3

UNKNOWN = 2

megaradrp.datamodel.read_fibers_extension(hdr, insmode=’LCB’)
Read the FIBERS extension

Parameters

hdr: FITS header

insmode: str default INSMODE

Returns

8.8. megaradrp.datamodel — MEGARA datamodel 75

MEGARA Pipeline Documentation, Release 0.8.dev0

FibersConf

8.9 megaradrp.utils — MEGARA utilities

Some utils

megaradrp.utils.add_collapsed_mos_extension(img, size=7, axis=0)
Add a collapsed image extension

Parameters

img: astropy.io.fits.HDUList

Returns

astropy.io.fits.HDUList Updated image

8.10 megaradrp.validators — MEGARA validators

Validators for Observing modes

megaradrp.validators.validate_focus(obresult)
Validate FOCUS_SPECTROGRAPH

8.11 megaradrp.visualization — MEGARA visualization

megaradrp.visualization.hexplot(axis, x, y, z, scale=1.0, extent=None, cmap=None,
norm=None, vmin=None, vmax=None, alpha=None,
linewidths=None, edgecolors=’none’, **kwargs)

Make a hexagonal grid plot.

Returns

object: matplotlib.collections.PolyCollection

8.12 megaradrp.simulation — Simulation modules

Sequences for observing modes of MEGARA

megaradrp.simulation.actions.add_targets_lcb2(targets, subfinal, wl, fibrad, pos_x,
pos_y, oe, telescope, atmosphere)

This correction includes DAR

megaradrp.simulation.actions.simulate_bias(detector)
Simulate a BIAS array.

megaradrp.simulation.actions.simulate_dark(detector, exposure)
Simulate a DARK array,

megaradrp.simulation.actions.simulate_dark_fits(factory, instrument, exposure, re-
peat=1)

Simulate a DARK FITS.

megaradrp.simulation.actions.simulate_flat(detector, exposure, source)
Simulate a FLAT array,

class megaradrp.simulation.control.ControlSystem(factory)
Top level

76 Chapter 8. Reference

MEGARA Pipeline Documentation, Release 0.8.dev0

class megaradrp.simulation.convolution.HexagonA(amplitude=1, x_0=0, y_0=0, ra-
dius=1, angle=0, **kwargs)

static evaluate(x, y, amplitude, x_0, y_0, radius, angle)
Evaluate the model on some input variables.

class megaradrp.simulation.cover.MegaraCover(parent=None)
MEGARA Cover

set_mode(mode)
Cover in the focal plane.

class megaradrp.simulation.detector.MegaraDetector(name, shape, oscan, pscan,
qe=1.0, qe_wl=None,
dark=0.0, readpars1=None,
readpars2=None, bins=’11’,
direction=’normal’)

Simple MEGARA detector.

init_regions(detshape, oscan, pscan, bng)
Create a image with overscan for testing.

saturate(x)
Compute non-linearity and saturation.

class megaradrp.simulation.detector.MegaraDetectorSat(name, shape, os-
can, pscan, qe=1.0,
qe_wl=None, dark=0.0,
readpars1=None, read-
pars2=None, bins=’11’,
direction=’normal’)

saturate(x)
Compute non-linearity and saturation.

class megaradrp.simulation.detector.ReadParams(gain=1.0, ron=2.0, bias=1000.0)
Readout parameters of each channel.

megaradrp.simulation.detector.binning(arr, br, bc)
Return a binned view if ‘arr’

class megaradrp.simulation.efficiency.InterpolFitsUVES(fname, fill_value=0.0)
Interpolate spectrum in UVES format.

This is the format of the sky spectrum file

Extended multiwavelength simulation Simple monocromatic simulation

megaradrp.simulation.instrument.compute_kernel(sigma, d=0.5, truncate=5.0)
A kernel representing a Gaussian convolved with a square.

megaradrp.simulation.instrument.pixcont_int(i, x0, sig)
Integrate a gaussian profile.

megaradrp.simulation.instrument.pixcont_int_pix(i, x0, sig, d=0.5)
Integrate a gaussian profile.

Computing differential atmospheric refraction

megaradrp.simulation.refraction.differential_p(zenith_distance, wl, wl_reference,
temperature, pressure, rela-
tive_humidity)

Differential refraction as given by 1982PASP. . . 94..715F

8.12. megaradrp.simulation — Simulation modules 77

MEGARA Pipeline Documentation, Release 0.8.dev0

8.13 Indices and tables

• genindex

• modindex

• search

• Glossary

78 Chapter 8. Reference

CHAPTER 9

Glossary

DFP Data Factory Pipeline

DRP Data Reduction Pipeline

observing mode One of the prescribed ways of observing with an instrument

recipe A software object that processes the data obtained with a given observing mode of the instru-
ment

79

MEGARA Pipeline Documentation, Release 0.8.dev0

80 Chapter 9. Glossary

CHAPTER 10

Cookbook

Release 0.8

Date Dec 05, 2018

81

MEGARA Pipeline Documentation, Release 0.8.dev0

82 Chapter 10. Cookbook

Python Module Index

m
megaradrp, 71
megaradrp.core, 71
megaradrp.datamodel, 74
megaradrp.instrument, 73
megaradrp.processing.wavecalibration,

73
megaradrp.processsing, 73
megaradrp.products, 73
megaradrp.recipes, 74
megaradrp.simulation, 76
megaradrp.simulation.actions, 76
megaradrp.simulation.calibrationunit,

76
megaradrp.simulation.control, 76
megaradrp.simulation.convolution, 76
megaradrp.simulation.cover, 77
megaradrp.simulation.detector, 77
megaradrp.simulation.efficiency, 77
megaradrp.simulation.extended, 77
megaradrp.simulation.factory, 77
megaradrp.simulation.fiberbundle, 77
megaradrp.simulation.fibermos, 77
megaradrp.simulation.focalplane, 77
megaradrp.simulation.instrument, 77
megaradrp.simulation.lamps, 77
megaradrp.simulation.lightfiber, 77
megaradrp.simulation.psslit, 77
megaradrp.simulation.refraction, 77
megaradrp.simulation.shutter, 77
megaradrp.simulation.telescope, 77
megaradrp.simulation.vph, 77
megaradrp.simulation.wheel, 77
megaradrp.types, 74
megaradrp.utils, 76
megaradrp.validators, 76
megaradrp.visualization, 76

83

MEGARA Pipeline Documentation, Release 0.8.dev0

84 Python Module Index

Index

A
AcquireLCBRecipe (class in

megaradrp.recipes.auxiliary.acquisitionlcb),
49

AcquireLCBRecipe.AcquireLCBRecipeInput
(class in megaradrp.recipes.auxiliary.acquisitionlcb),
50

AcquireLCBRecipe.AcquireLCBRecipeResult
(class in megaradrp.recipes.auxiliary.acquisitionlcb),
50

AcquireMOSRecipe (class in
megaradrp.recipes.auxiliary.acquisitionmos),
52

AcquireMOSRecipe.AcquireMOSRecipeInput
(class in megaradrp.recipes.auxiliary.acquisitionmos),
52

AcquireMOSRecipe.AcquireMOSRecipeResult
(class in megaradrp.recipes.auxiliary.acquisitionmos),
53

active_fibers() (megaradrp.datamodel.FibersConf
method), 74

add_collapsed_mos_extension() (in module
megaradrp.utils), 76

add_targets_lcb2() (in module
megaradrp.simulation.actions), 76

ArcCalibrationRecipe (class in
megaradrp.recipes.calibration.arc),
28

ArcCalibrationRecipe.ArcCalibrationRecipeInput
(class in megaradrp.recipes.calibration.arc),
28

ArcCalibrationRecipe.ArcCalibrationRecipeResult
(class in megaradrp.recipes.calibration.arc),
29

attrs() (megaradrp.core.recipe.MegaraBaseRecipe.MegaraBaseRecipeInput
method), 71

attrs() (megaradrp.core.recipe.MegaraBaseRecipe.MegaraBaseRecipeResult
method), 72

B
BadPixelsMaskRecipe (class in

megaradrp.recipes.calibration.bpm),
36

BadPixelsMaskRecipe.BadPixelsMaskRecipeInput
(class in megaradrp.recipes.calibration.bpm),
36, 37

BadPixelsMaskRecipe.BadPixelsMaskRecipeResult
(class in megaradrp.recipes.calibration.bpm),
36, 37

BaseStructuredCalibration (class in
megaradrp.products.structured), 74

BiasRecipe (class in
megaradrp.recipes.calibration.bias),
19

BiasRecipe.BiasRecipeInput (class in
megaradrp.recipes.calibration.bias),
19

BiasRecipe.BiasRecipeResult (class in
megaradrp.recipes.calibration.bias),
19

binning() (in module
megaradrp.simulation.detector), 77

BLANK (megaradrp.datamodel.TargetType at-
tribute), 75

build_recipe_input() (megaradrp.core.recipe.MegaraBaseRecipe
method), 72

BundleConf (class in megaradrp.datamodel), 74
bundles_to_table() (megaradrp.datamodel.FibersConf

method), 74

C
calc_fwhm_of_line() (megaradrp.recipes.calibration.arc.ArcCalibrationRecipe

method), 29
compute_kernel() (in module

megaradrp.simulation.instrument),
77

conected_fibers() (megaradrp.datamodel.FibersConf
method), 74

configure() (megaradrp.core.recipe.MegaraBaseRecipe
method), 72

ControlSystem (class in
megaradrp.simulation.control), 76

create_default_runinfo()
(megaradrp.core.recipe.MegaraBaseRecipe
static method), 72

create_input() (megaradrp.core.recipe.MegaraBaseRecipe
class method), 72

85

MEGARA Pipeline Documentation, Release 0.8.dev0

create_result() (megaradrp.core.recipe.MegaraBaseRecipe
class method), 72

D
DarkRecipe (class in

megaradrp.recipes.calibration.dark),
20

DarkRecipe.DarkRecipeInput (class in
megaradrp.recipes.calibration.dark),
20

DarkRecipe.DarkRecipeResult (class in
megaradrp.recipes.calibration.dark),
20

datamodel (megaradrp.core.recipe.MegaraBaseRecipe
attribute), 72

db_info_keys (megaradrp.datamodel.MegaraDataModel
attribute), 75

db_info_keys_extra (megaradrp.datamodel.MegaraDataModel
attribute), 75

DFP, 79
differential_p() (in module

megaradrp.simulation.refraction), 77
DRP, 79

E
evaluate() (megaradrp.simulation.convolution.HexagonA

static method), 77

F
fiber_scale_unit() (megaradrp.datamodel.MegaraDataModel

method), 75
FiberConf (class in megaradrp.datamodel), 74
FiberFlatRecipe (class in

megaradrp.recipes.calibration.flat),
30

FiberFlatRecipe.FiberFlatRecipeInput (class in
megaradrp.recipes.calibration.flat), 31

FiberFlatRecipe.FiberFlatRecipeResult (class in
megaradrp.recipes.calibration.flat), 31

fibers_to_table() (megaradrp.datamodel.FibersConf
method), 74

FibersConf (class in megaradrp.datamodel), 74
FocusSpectrographRecipe (class in

megaradrp.recipes.auxiliary.focusspec),
47

FocusSpectrographRecipe.FocusSpectrographRecipeInput
(class in megaradrp.recipes.auxiliary.focusspec),
48

FocusSpectrographRecipe.FocusSpectrographRecipeResult
(class in megaradrp.recipes.auxiliary.focusspec),
48

FocusTelescopeRecipe (class in
megaradrp.recipes.auxiliary.focustel),
45

FocusTelescopeRecipe.FocusTelescopeRecipeInput
(class in megaradrp.recipes.auxiliary.focustel),
45

FocusTelescopeRecipe.FocusTelescopeRecipeResult
(class in megaradrp.recipes.auxiliary.focustel),
46

G
gather_info() (megaradrp.core.recipe.MegaraBaseRecipe

method), 72
gather_info_oresult()

(megaradrp.datamodel.MegaraDataModel
method), 75

get_fiberconf() (megaradrp.datamodel.MegaraDataModel
method), 75

get_fiberconf_default()
(megaradrp.datamodel.MegaraDataModel
method), 75

get_filters() (megaradrp.core.recipe.MegaraBaseRecipe
method), 72

get_imgid() (megaradrp.datamodel.MegaraDataModel
method), 75

H
HexagonA (class in

megaradrp.simulation.convolution),
76

hexplot() (in module megaradrp.visualization), 76

I
inactive_fibers() (megaradrp.datamodel.FibersConf

method), 74
init_filters() (megaradrp.core.recipe.MegaraBaseRecipe

method), 72
init_filters_generic() (megaradrp.core.recipe.MegaraBaseRecipe

method), 72
init_regions() (megaradrp.simulation.detector.MegaraDetector

method), 77
InterpolFitsUVES (class in

megaradrp.simulation.efficiency), 77
invalid_fibers() (megaradrp.datamodel.FibersConf

method), 75

L
LCBImageRecipe (class in

megaradrp.recipes.scientific.lcb), 54
LCBImageRecipe.ImageRecipeInput (class in

megaradrp.recipes.scientific.lcb), 55
LCBImageRecipe.LCBImageRecipeResult (class in

megaradrp.recipes.scientific.lcb), 55
LCBStandardRecipe (class in

megaradrp.recipes.calibration.lcbstdstar),
39

LCBStandardRecipe.LCBStandardRecipeInput
(class in megaradrp.recipes.calibration.lcbstdstar),
40

LCBStandardRecipe.LCBStandardRecipeResult
(class in megaradrp.recipes.calibration.lcbstdstar),
41

Loader (class in megaradrp.instrument.loader), 73

86 Index

MEGARA Pipeline Documentation, Release 0.8.dev0

logger (megaradrp.core.recipe.MegaraBaseRecipe
attribute), 72

M
map_borders() (megaradrp.processing.wavecalibration.WavelengthCalibrator

method), 73
MasterBias (class in megaradrp.types), 74
MasterBPM (class in megaradrp.types), 74
MasterDark (class in megaradrp.types), 74
MasterFiberFlat (class in megaradrp.types), 74
MasterSensitivity (class in megaradrp.types), 74
MasterSlitFlat (class in megaradrp.types), 74
MasterTwilightFlat (class in megaradrp.types), 74
MegaraBaseRecipe (class in

megaradrp.core.recipe), 71
MegaraBaseRecipe.MegaraBaseRecipeInput (class

in megaradrp.core.recipe), 71
MegaraBaseRecipe.MegaraBaseRecipeResult

(class in megaradrp.core.recipe), 72
MegaraCover (class in

megaradrp.simulation.cover), 77
MegaraDataModel (class in

megaradrp.datamodel), 75
MegaraDetector (class in

megaradrp.simulation.detector), 77
MegaraDetectorSat (class in

megaradrp.simulation.detector), 77
megaradrp (module), 71
megaradrp.core (module), 71
megaradrp.datamodel (module), 74
megaradrp.instrument (module), 73
megaradrp.processing.wavecalibration (module),

73
megaradrp.processsing (module), 73
megaradrp.products (module), 73
megaradrp.recipes (module), 74
megaradrp.simulation (module), 76
megaradrp.simulation.actions (module), 76
megaradrp.simulation.calibrationunit (module),

76
megaradrp.simulation.control (module), 76
megaradrp.simulation.convolution (module), 76
megaradrp.simulation.cover (module), 77
megaradrp.simulation.detector (module), 77
megaradrp.simulation.efficiency (module), 77
megaradrp.simulation.extended (module), 77
megaradrp.simulation.factory (module), 77
megaradrp.simulation.fiberbundle (module), 77
megaradrp.simulation.fibermos (module), 77
megaradrp.simulation.focalplane (module), 77
megaradrp.simulation.instrument (module), 77
megaradrp.simulation.lamps (module), 77
megaradrp.simulation.lightfiber (module), 77
megaradrp.simulation.psslit (module), 77
megaradrp.simulation.refraction (module), 77
megaradrp.simulation.shutter (module), 77
megaradrp.simulation.telescope (module), 77
megaradrp.simulation.vph (module), 77

megaradrp.simulation.wheel (module), 77
megaradrp.types (module), 74
megaradrp.utils (module), 76
megaradrp.validators (module), 76
megaradrp.visualization (module), 76
MegaraFrame (class in megaradrp.types), 73
meta_dinfo_headers (megaradrp.datamodel.MegaraDataModel

attribute), 75
meta_info_headers (megaradrp.datamodel.MegaraDataModel

attribute), 75
model_coeff_vs_fiber()

(megaradrp.recipes.calibration.arc.ArcCalibrationRecipe
method), 29

ModelMap (class in
megaradrp.products.modelmap), 74

ModelMapRecipe (class in
megaradrp.recipes.calibration.modelmap),
26

ModelMapRecipe.ModelMapRecipeInput (class in
megaradrp.recipes.calibration.modelmap),
26

ModelMapRecipe.ModelMapRecipeResult (class
in megaradrp.recipes.calibration.modelmap),
26

MOSImageRecipe (class in
megaradrp.recipes.scientific.mos), 56

MOSImageRecipe.ImageRecipeInput (class in
megaradrp.recipes.scientific.mos), 57

MOSImageRecipe.MOSImageRecipeResult (class
in megaradrp.recipes.scientific.mos), 57

MOSStandardRecipe (class in
megaradrp.recipes.calibration.mosstdstar),
42

MOSStandardRecipe.MOSStandardRecipeInput
(class in megaradrp.recipes.calibration.mosstdstar),
42

MOSStandardRecipe.MOSStandardRecipeResult
(class in megaradrp.recipes.calibration.mosstdstar),
43

O
obresult (megaradrp.core.recipe.MegaraBaseRecipe.MegaraBaseRecipeInput

attribute), 71
observing mode, 79
obsres_extractor() (megaradrp.core.recipe.MegaraBaseRecipe

method), 72

P
pixcont_int() (in module

megaradrp.simulation.instrument),
77

pixcont_int_pix() (in module
megaradrp.simulation.instrument),
77

PLATESCALE (megaradrp.datamodel.MegaraDataModel
attribute), 75

ProcessedFrame (class in megaradrp.types), 73
ProcessedImage (class in megaradrp.types), 73

Index 87

MEGARA Pipeline Documentation, Release 0.8.dev0

ProcessedImageProduct (class in
megaradrp.types), 73

ProcessedMultiRSS (class in megaradrp.types), 73
ProcessedRSS (class in megaradrp.types), 73
ProcessedRSSProduct (class in megaradrp.types),

74
ProcessedSpectrum (class in megaradrp.types), 73
ProcessedSpectrumProduct (class in

megaradrp.types), 74
products() (megaradrp.core.recipe.MegaraBaseRecipe

class method), 72

Q
qc (megaradrp.core.recipe.MegaraBaseRecipe.MegaraBaseRecipeResult

attribute), 72
query_attrs (megaradrp.datamodel.MegaraDataModel

attribute), 75
QueryAttribute (class in megaradrp.datamodel),

75

R
read_fibers_extension() (in module

megaradrp.datamodel), 75
ReadParams (class in

megaradrp.simulation.detector), 77
recipe, 79
Recipe (class in megaradrp.recipes.combined.extinctionstar),

59
Recipe (class in megaradrp.recipes.combined.sensstar),

58
Recipe.RecipeInput (class in

megaradrp.recipes.combined.extinctionstar),
59

Recipe.RecipeInput (class in
megaradrp.recipes.combined.sensstar),
58

Recipe.RecipeResult (class in
megaradrp.recipes.combined.extinctionstar),
59

Recipe.RecipeResult (class in
megaradrp.recipes.combined.sensstar),
58

RecipeInput (class in
megaradrp.recipes.calibration.twilight),
33

RecipeInput (megaradrp.core.recipe.MegaraBaseRecipe
attribute), 72

RecipeInput (megaradrp.recipes.auxiliary.acquisitionlcb.AcquireLCBRecipe
attribute), 51

RecipeInput (megaradrp.recipes.auxiliary.acquisitionmos.AcquireMOSRecipe
attribute), 53

RecipeInput (megaradrp.recipes.auxiliary.focustel.FocusTelescopeRecipe
attribute), 46

RecipeInput (megaradrp.recipes.calibration.arc.ArcCalibrationRecipe
attribute), 29

RecipeInput (megaradrp.recipes.calibration.bias.BiasRecipe
attribute), 19

RecipeInput (megaradrp.recipes.calibration.bpm.BadPixelsMaskRecipe
attribute), 36

RecipeInput (megaradrp.recipes.calibration.dark.DarkRecipe
attribute), 21

RecipeInput (megaradrp.recipes.calibration.flat.FiberFlatRecipe
attribute), 31

RecipeInput (megaradrp.recipes.calibration.lcbstdstar.LCBStandardRecipe
attribute), 41

RecipeInput (megaradrp.recipes.calibration.modelmap.ModelMapRecipe
attribute), 27

RecipeInput (megaradrp.recipes.calibration.mosstdstar.MOSStandardRecipe
attribute), 43

RecipeInput (megaradrp.recipes.calibration.slitflat.SlitFlatRecipe
attribute), 22

RecipeInput (megaradrp.recipes.calibration.trace.TraceMapRecipe
attribute), 24

RecipeInput (megaradrp.recipes.scientific.lcb.LCBImageRecipe
attribute), 55

RecipeInput (megaradrp.recipes.scientific.mos.MOSImageRecipe
attribute), 58

RecipeResult (class in
megaradrp.recipes.calibration.twilight),
33

RecipeResult (megaradrp.core.recipe.MegaraBaseRecipe
attribute), 72

RecipeResult (megaradrp.recipes.auxiliary.acquisitionlcb.AcquireLCBRecipe
attribute), 51

RecipeResult (megaradrp.recipes.auxiliary.acquisitionmos.AcquireMOSRecipe
attribute), 53

RecipeResult (megaradrp.recipes.auxiliary.focustel.FocusTelescopeRecipe
attribute), 46

RecipeResult (megaradrp.recipes.calibration.arc.ArcCalibrationRecipe
attribute), 29

RecipeResult (megaradrp.recipes.calibration.bias.BiasRecipe
attribute), 19

RecipeResult (megaradrp.recipes.calibration.bpm.BadPixelsMaskRecipe
attribute), 36

RecipeResult (megaradrp.recipes.calibration.dark.DarkRecipe
attribute), 21

RecipeResult (megaradrp.recipes.calibration.flat.FiberFlatRecipe
attribute), 32

RecipeResult (megaradrp.recipes.calibration.lcbstdstar.LCBStandardRecipe
attribute), 41

RecipeResult (megaradrp.recipes.calibration.modelmap.ModelMapRecipe
attribute), 27

RecipeResult (megaradrp.recipes.calibration.mosstdstar.MOSStandardRecipe
attribute), 43

RecipeResult (megaradrp.recipes.calibration.slitflat.SlitFlatRecipe
attribute), 22

RecipeResult (megaradrp.recipes.calibration.trace.TraceMapRecipe
attribute), 24

RecipeResult (megaradrp.recipes.scientific.lcb.LCBImageRecipe
attribute), 55

RecipeResult (megaradrp.recipes.scientific.mos.MOSImageRecipe
attribute), 58

REFERENCE (megaradrp.datamodel.TargetType
attribute), 75

ReferenceExtinctionTable (class in

88 Index

MEGARA Pipeline Documentation, Release 0.8.dev0

megaradrp.types), 74
ReferenceSpectrumTable (class in

megaradrp.types), 74
refine_boxes_from_image()

(megaradrp.recipes.calibration.trace.TraceMapRecipe
method), 24

reorder_and_fit() (megaradrp.recipes.auxiliary.focustel.FocusTelescopeRecipe
method), 46

requirements() (megaradrp.core.recipe.MegaraBaseRecipe
class method), 72

run() (megaradrp.core.recipe.MegaraBaseRecipe
method), 72

run() (megaradrp.recipes.calibration.arc.ArcCalibrationRecipe
method), 29

run() (megaradrp.recipes.calibration.bias.BiasRecipe
method), 19

run() (megaradrp.recipes.calibration.flat.FiberFlatRecipe
method), 32

run() (megaradrp.recipes.calibration.trace.TraceMapRecipe
method), 25

run_on_image() (megaradrp.recipes.auxiliary.focustel.FocusTelescopeRecipe
method), 46

run_qc() (megaradrp.core.recipe.MegaraBaseRecipe
method), 72

run_qc() (megaradrp.recipes.calibration.trace.TraceMapRecipe
method), 25

S
saturate() (megaradrp.simulation.detector.MegaraDetector

method), 77
saturate() (megaradrp.simulation.detector.MegaraDetectorSat

method), 77
save_intermediate_array()

(megaradrp.core.recipe.MegaraBaseRecipe
method), 72

save_intermediate_img()
(megaradrp.core.recipe.MegaraBaseRecipe
method), 72

save_structured_as_json()
(megaradrp.core.recipe.MegaraBaseRecipe
method), 72

set_base_headers() (megaradrp.core.recipe.MegaraBaseRecipe
method), 72

set_base_headers() (megaradrp.recipes.calibration.bias.BiasRecipe
method), 19

set_base_headers() (megaradrp.recipes.calibration.bpm.BadPixelsMaskRecipe
method), 37

set_base_headers() (megaradrp.recipes.calibration.dark.DarkRecipe
method), 21

set_base_headers() (megaradrp.recipes.calibration.flat.FiberFlatRecipe
method), 32

set_base_headers() (megaradrp.recipes.calibration.slitflat.SlitFlatRecipe
method), 22

set_base_headers() (megaradrp.recipes.calibration.twilight.TwilightFiberFlatRecipe
method), 35

set_mode() (megaradrp.simulation.cover.MegaraCover
method), 77

simulate_bias() (in module
megaradrp.simulation.actions), 76

simulate_dark() (in module
megaradrp.simulation.actions), 76

simulate_dark_fits() (in module
megaradrp.simulation.actions), 76

simulate_flat() (in module
megaradrp.simulation.actions), 76

SKY (megaradrp.datamodel.TargetType attribute),
75

sky_fibers() (megaradrp.datamodel.FibersConf
method), 75

SlitFlatRecipe (class in
megaradrp.recipes.calibration.slitflat), 22

SlitFlatRecipe.SlitFlatRecipeInput (class in
megaradrp.recipes.calibration.slitflat), 22

SlitFlatRecipe.SlitFlatRecipeResult (class in
megaradrp.recipes.calibration.slitflat), 22

SOURCE (megaradrp.datamodel.TargetType at-
tribute), 75

spectral_coverage() (megaradrp.datamodel.FibersConf
method), 75

STAR (megaradrp.datamodel.TargetType at-
tribute), 75

store_to() (megaradrp.core.recipe.MegaraBaseRecipe.MegaraBaseRecipeResult
method), 72

stored() (megaradrp.core.recipe.MegaraBaseRecipe.MegaraBaseRecipeInput
class method), 71

stored() (megaradrp.core.recipe.MegaraBaseRecipe.MegaraBaseRecipeResult
class method), 72

T
TargetType (class in megaradrp.datamodel), 75
TraceMap (class in

megaradrp.products.tracemap), 74
TraceMapRecipe (class in

megaradrp.recipes.calibration.trace),
23

TraceMapRecipe.TraceMapRecipeInput (class in
megaradrp.recipes.calibration.trace), 24

TraceMapRecipe.TraceMapRecipeResult (class in
megaradrp.recipes.calibration.trace), 24

TwilightFiberFlatRecipe (class in
megaradrp.recipes.calibration.twilight),
33

TwilightFiberFlatRecipe.MegaraBaseRecipeInput
(class in megaradrp.recipes.calibration.twilight),
34

TwilightFiberFlatRecipe.MegaraBaseRecipeResult
(class in megaradrp.recipes.calibration.twilight),
34

TwilightFiberFlatRecipe.RecipeInput (class in
megaradrp.recipes.calibration.twilight),
34

TwilightFiberFlatRecipe.RecipeResult (class in
megaradrp.recipes.calibration.twilight),
34

Index 89

MEGARA Pipeline Documentation, Release 0.8.dev0

types_getter() (megaradrp.core.recipe.MegaraBaseRecipe
method), 73

U
UNASSIGNED (megaradrp.datamodel.TargetType

attribute), 75
UNKNOWN (megaradrp.datamodel.TargetType

attribute), 75

V
valid_fibers() (megaradrp.datamodel.FibersConf

method), 75
validate() (megaradrp.core.recipe.MegaraBaseRecipe.MegaraBaseRecipeInput

method), 71
validate() (megaradrp.core.recipe.MegaraBaseRecipe.MegaraBaseRecipeResult

method), 72
validate_focus() (in module

megaradrp.validators), 76
validate_input() (megaradrp.core.recipe.MegaraBaseRecipe

method), 73
validate_input() (megaradrp.recipes.calibration.bpm.BadPixelsMaskRecipe

method), 37
validate_result() (megaradrp.core.recipe.MegaraBaseRecipe

method), 73

W
WavelengthCalibration (class in

megaradrp.products.wavecalibration),
74

WavelengthCalibrator (class in
megaradrp.processing.wavecalibration),
73

90 Index

	Overview
	Installation
	Requirements
	Installing MEGARA DRP
	Installing MEGARA DFP

	Testing
	Running tests

	Running the pipeline
	Format of the observation result
	Format of the requirements file
	Running the pipeline

	Observing modes
	Calibration Modes
	Auxiliary Modes
	Scientific Modes
	Combined Modes

	Data Products
	FITS Keywords
	Data products

	Reduction Recipes
	Execution environment of the Recipes
	Recipe Parameters
	Recipe Products

	Reference
	megaradrp.core — Base classes for processing
	megaradrp.instrument — Static configuration
	megaradrp.processing — Processing functions
	megaradrp.processing.wavecalibration —
	megaradrp.products — Data products of the MEGARA pipeline
	megaradrp.recipes — Reduction Recipes for MEGARA
	megaradrp.types — MEGARA data types
	megaradrp.datamodel — MEGARA datamodel
	megaradrp.utils — MEGARA utilities
	megaradrp.validators — MEGARA validators
	megaradrp.visualization — MEGARA visualization
	megaradrp.simulation — Simulation modules
	Indices and tables

	Glossary
	Cookbook
	Python Module Index

